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SUMMARY

A combined Monte Carlo-direct covariance algorithm digital computer

software package has been developed and tested for determining the

effects of noise disturbances on large-scale missile systems. The

combined software package was applied to a thirty-third order math

model of a six degree-of-freedom air defense missile system. The

large-scale system was composed of a fifteenth-order (15th) autopilot,

a fourth-order (4th) actuator subsystem, a twelfth-order (12th)

airframe, and a second-order (2nd) seeker. This final report documents

the results of a two-year development effort under Contract DAAHOI-72-

C-0672, which was initiated on April 1, 1972.

A basic statistical covariance program involving incremental

:2 variations about noise-free operating conditions was developed during

the first year to calculate the effects of noise propagation for missile

systems up to approximately 25th order. Specific tasks during

that period included the development and testing of the basic

program, establishing accuracy levels on a typical missile system,

establishing tradeoff possibilities for improved program operation,

and developing and testing automatic programs to be used with existing 4

digital or hybrid simulations. The basic program was expanded for

higher-order systems up to approximately 50th order during the

second year. Specific tasks included expanding the basic program,

simplifying the program via approximations, developing sequential

, i!
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operations, and establishing final guidelines. All eight of these

contract objectives and the associated four milestones were met

on schedule,

The expande4I program is dsscribed in Chapters III and IV of

i this final report with numerical results for a thirty-third order

missile system ih Chapter V. In particular, Table IV of Chapter IV

indicates that ine new subroutines were added to the existing digital

computer program, major changes were made in three other subroutines,

and seven of the remaining seventeen subroutines required only minor

changes. Several innovat" -is, including an adaptive feature for

the calculation of certain coefficient matiix elements, were incorporated

into the program development. These have been documented in this

final report.

Accuracy levels were established for the direct covariance algorithm

by comparing with 25 Monte Carlo simulation runs for the large-scale

missile system. Figure 13 indicates that excellent results were
obtained for several orders of missile systems by using the direct i

covariance algorithm. It was also shown that the thirty-third order

system exhibited harsh nonlinear characteristics during the launch

and terminal modes of a typical flight. Therefore, the Monte Carlo

technique was utilized during these modes of operation, and the

direct covariance algorithm was used during the large mid-portion of

the flight. This combined software package is included in Appendix C.

Tradeoff possibilities with respect to accuracy, computational

speed, computing equipment requirements (including storage), and

program complexity were examined. It was shown that the RK2 integration

formula represented an efficient tradeoff between speed and accuracy

- .i



for covariance matrix calculations. Simplifying approximations

were developed to speed up the operation of the combined software

package. Constant coefficients were used to replace slowly-varying

elements of the A(t) coefficient matrix. It was shown that during

the large mid-portion of the flight, where the direct covariance

algorithm was applicable, an important approximation involved the

propagation of noise through the seeker relay nonlinearities. Output

variance calculations for these relays were achieved from Subroutines

SNOISE and DETARA by using the resulting output joint probability

density function directly. The harsh nonlinearties encountered during

launch and terminal modes could not be handled by this simplified

approach. Therefore, Monte Carlo runs were needed for these portions

of the flight to supplement direct covariance calculations.

An increased accuracy and a significant savings in computational

time are realized for those applications where the direct covariance

algorithm may be used over a large portion of the flight. It is shown

in Chapter V that input noise levels determine the region in which the

direct covariance algorithm is applicable. For the thirty-third order

system described in Chapter Ill with the given noise levels, the combined

program operated at approximately twice the speed of 25 Monte Carlo

simulations with comparable accuracy. Moreover, the combined program

operated at approximately six times the speed of 200 Monte Carlo simu-

lations and over thirty times the speed of 1000 Monte Carlo simulations.

Based on both accuracy and computational speed, this combined digital

computer software package provides improved capabilities for handling

noise propagation in large-scale missile system applications.

II
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CHAPTER I

INTRODUCTION

Computer software packages have proven to be very useful for the

application of sophisticated analysis and design algorithms for in-

dustrial problems. Their usefulness in providing powerful results in an

easily applied form for the user has led to the development of efficient

software packages for large-scale systems. One problem area in which

software packages are becoming more popular involves those systems

having inherent noise problems resulting from random variations in

disturbance inputs and/or system parameters. These random variations

result in errors being propagated throughout the large-scale systems.

A thorough knowledge of the large-scale system dynamics, statistical

properties of dynamical systems, and some simulation experience are

necessary for the development of computer software packages for these

applications. This final report describes the development and testing

* of a digital computer software package for determining the propagation

of errors due to noise in large-scale missile systems.

Background

Previous work on noise propagation problems has focused on the use

of the Monte Carlo technique in which large numbers of runs are en-

semble-averaged to obtain statistical results. Primary considerations

in the use of this traditional approach are the generation of

_
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prespecified statistical inputs and the simulation of dynamical sys-

* I tems. A more modern approach based on computing the state covariance

matrix directly has become popular in recent years. This new approach,

referred to as the direct covariance algorithm, has been applied for

an approximate analysis of large-scale nonlinear systems. The develop-

ment of a computer software package using the direct covariance

algorithm would geuitly enhance large-scale system analysis capabili-

ties.

The Monte Carlo method uses repeated sample functions as inputs

to the model of a mathematical or physical process. Earlier noise

propagation studies by the Monte Carlo method were based on the use of

analog noise ge,,erators. Due to the fact that these generators were

not repetitive, the analog approach became unpopular after the recent

deveiopnent of digital pseudo-random number generators. These genera- -.

tors could be used to generate the same numbers as many times as

desired and, thus, ease the work of debugging the simulated program.

Large amounts of simulated random data are required for acceptable

results. For the digital implementation of the Monte Carlo technique,

pseudo-random numbers are either drawn from tables (1) or generated

from simple relationships within the computer. For the former case

the random numbers must be stored and used whenever required. How-

ever, for the latter case Chambers (2), Hull and Dobell (3), MacLaren

and Marsaglia (4), and Gelder (5) have developed mixed congruential

and multiplicative recurrence formulas for generating pseudo-random

numbers. The numbers generated are uniformly distributed on the

interval (0,1). The uniformly distributed numbers may be converted

into zero-mean, unity-variance, Gaussianly distributed random numbers



W

3 3

by an exact closed-form expression developed by Box and Muller (6). An

alternate, but approximate, method of converting the uniform sequence

to a Gaussian sequence utilizes the Central Limit theorem which states

that as the number of statistically independent variables is increased

without limit, a Gaussian probability distribution is approached for

the sum, regardless of the probability distributions of the various

variables.

A direct technique 7-12) has resulted from the error covariance

matrix propagation in the Kalman filtering equation (13,14). Tl:ough

exact for linear time-varying systems, the direct covariance algorithm

has also been applied for mildly non-linear systems. For example, this

technique has been used by Kuhnel and Sage (15) for sensitivity equa-

tions about a nominal flight path due to trajectory initial condition

dispersions and random system variations. They used a thirty-third

order, six degree-of-freedom homing missile model to illustrate the

application to a realistic situation. Kuhnel and Sage used only the

adjoint method whereas Irwin and Hung C16) applied both direct and

adjoint methods for evaluating the state covariance algorithm for

large-scale, nonlinear, dynamical systems. An interval-by-interval

linearization procedure has also been proposed (17,18). For nonlinear

feedback systems, the direct covariance approach has been used by

Brown (19-21) for solving trajectory optimization problems. Using a

more accurate algorithm about a nominal trajectory, Clark (22, 23) has

developed related results.

Rowland and Holmes (24) have shown that the direct covariance

technique is more accurate and faster than the Monte Carlo approach.

They demonstrated that the direct covariance algorithm can be applied

• C-m m
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to mildly nonlinear systems with acceptable results by using linearized

incremental equations about the noise-free solution. The objective of

this effort was to develop a computer software package for the ef-

ficient implementation of the direct covariance algorithm.

Derivation of the Direct Covariance Algorithm

Consider the linear, time-varying, dynamical system represented

by the vector differential equation

k(t) = A(t)x(t) + B(t)w(t) (1.1)

where x(t) is an n-dimensional state vector, A(t) is an n by n matrix,

B(t) is an n by m matrix, and w(t) is an m-dimensional input noise vector.

The covariance matrix of the state vector (24,25)* is defined as

P(t) E{x(t)xT(t)} (1.2)

The elements of the input noise vector are zero-mean white noise pro-

cesses, and their covariance matrix is represented by

E{w(t)wK(T)} = Qw(t) 6(t-1) (1.3)

where 6(.) is the impulse function. The m by m covariance matrix

Qw(t) may be time-varying in general.

The covariance matrix P(t) may be determined directly in terms

of A(t), B(t),and Qw(t) by using x(t) in (1.2). The solution of the

time-varying, linear differential equation given by (1.1) is

x(t) = ¢1(t,t o ) x(t o ) + ft (t,t) B(T) W(T)dT (1.4)-- to
0

Therefore, the covarianice matrix of x(t) may be calculated as

* Reprints of (25) and other selected papers are included in Appendix A.
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aP(t) = E{xCt)x(t)

t0 0

Since x(to) and w(t) are uncorrelated for all t>to ,

P(t) = E[4(t,to) x(to) {O(t,to) X(to)}T +

ft f (,l (
to t t) ) W(tl){(t, 2)B(T2)w(T2))TdTidT 2

= (t,t) E{x(t oxT(t_)} 0 (t,to)

t t (t,Tl) B(TI) Efw(TI)wT(2 I BT(T2) T(t,T2)dTjdT2 (1,6)
1~ 0 t Ef(o 1)T 2)} BT 0

Using (1.3) and the sifting property of the delta function, (1.6)

reduces to

P(t) : ,(t,t o) P(t) (tt +

0 00ft (t,,1l) B{,1) Q(Tl  B T{) (TIc t,T )d~l (1.7)

The integral equation in (1.7) may be expressed more conveniently as a

matrix differential equation for P(t). In establishing this form, the

state transition matrix ,(t,t o) is identified as the solution of the

homogeneous linear differential equation

;(t,to) = D (t,to) = Ao(t,to) (1.8)

with the boundary condition s(t ,t ) = I. Using the relationship in

(1.8) to simplify (1.7) gives
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P(t) ( t"0) P(to) T(tt + O(t,to) P(to} $T(t,t o)

+i to a e. (t 1 )Q w( B T (-[ ) T (t,TI )d-r
to at; 1 d'l

+ f' 0(t,t 1 ) B(l) Q (I B (r ) t
0

+= A(t) [ B(t,to) P(to) BT(t,to)

+ ft to (ttl) B(tI) Qw( 1 B T(tl) 4T(t',l)dTI]
t0 

_

T+ [0(t,to) P(to) 0 (t,t )

to~t (tTI)B(-rI)Qw(-r!)BT(kI) (t,-rI)d-r,]TAT(t)t0

+ B(t) w BT(t) (19)

where (t,t) has been replaced by the identity matrix I. Therefore,

P(t) = A(t) P(t) + P(t) AT(t) + B(t) Qw(t) BT(t) (1.10)

The desired result in (1.10) yields P(t) by solving a set of linear

differential equations. i

Criteria for Comparison

Since the most efficient technique is sought for the study of

noise propagation in large-scale systems, the criteria for comparison

between the Monte Carlo technique and the direct covariance algorithm

play an important role in selecting the most suitable technique. Some

of these criteria are discussed in the following paragraphs.
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Information Provided

The primary consideration for choosing a sim-ulation technique is

greatly influenced by the information provided by that technique. The

Monte Carlo technique provides the complete probability density func-

tion associated with random phenomena, whereas the direct covariance

technique only gives the variance about the nominal trajectory, which

serves as the mean value. In many applications of interest, the

mean and variance of selected states is all the information that is

required for an acceptable analysis of system behavior.

Accur ac

The next criterion for comparison is the accuracy level pro-

vided, which varies with different techniques. The direct covariance

algorithm gives exact results for linear systems and may be applied

to yield acceptable results for mildly nonlinear systems. On the

other hand, the results of 25 to 50 Monte Carlo runs may not provide

acceptable accuracy, although a high accuracy may be expected with

1000 Monte Carlo runs (24,25). The step size chosen for integration may

be used as a control for the tradeoff between accuracy and compu-

tational time.

Computer Storage

The computer software package efficiency may also be Judged by

th computer storage needed for the anplication of various techniques.

The direct covariance algorithm requires somewhat more storage as

compared to the Monte Carlo technique. The amount of additional
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storage depends upon the order of the system being considered as shown

in later chapters.

Computational Time

Another objective of an efficient computer software package is to

obtain a computationally fast algorithm. T!e speed and accuracy may

be examined with respect to tradeoff possibilities. For extremely

j accurate results, the computational time needed may be quite large.

By the use of large integration step sizes, the computational speed

may be increased. There are many approximate techniques which may be

used to reduce the computation time. For example, slowly time-varying

coefficients may be replaced by constant coefficients and very small

variables and coefficients may be replaced by zero. Moreover, if

the order of the system can be reduced, a considerable savings in com-

puter time might be realized.

Program Cm il ity

The computer software package should be simple so that anyone

with only limited simulation experience is able to understand it. Due

to the inverse relation of the complexity arid computation time, the

tradeoff between them is possible. With maximum complexity the com-

puter time may be reduced by as riuch as a factor of ten in certain

applications.

Possibilities of Extension

The general computer software package for the direct covariance

algorithm is a fundamental step in the subsequent development of an

* 4
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efficient software package for Kalman filtering as a practical esti-

mation algorithm. Furthermore, many approximate nonlinear filtering

algorithms are based on similar considerations.

Outline

Following this introductory chapter, the direct covariance algo-

rithm is extended in Chapter II for application to nonlinear systems.

In addition, several Monte Carlo tests are performed to determine a

suitabse discretization procedure for subsequent use in validating

the results of the digital computer software package. The software

package development and its application to a large-scale missile sys-

tem are described in Chapter III. A description of the combined

Monte Carlo - direct covariance algorithm software package-is provided

in Chapter IV. Final numerical results using this software package

are presented in Chapter V.

A



CHAPTER II

DIRECT COVARIANCE ALGORITHM EXTENSIONS

AND MONTE CARLO TESTING

This chapter defines the general mathematical system under con-

sideration and extends the direct covariance algorithm for this non-

linear case. Numerical results are presented for a second-order

nonlinear system to demonstrate the applicability of the algorithm.

Thereafter, the problem of modeling continuous white noise inputs on

the digital computer is investigated from a more general viewpoint

than considered previously. Three modeling representations are pre-

sented and then compared on a second-order system. The best of these

discretization procedures is used in subsequent chapters to compare the

Monte Carlo technique with the direct covariance algorithm on a

thirty- third order math model of a six degree-of-freedom air defense

missile system.

Mathematical Formulation

Consider the nonlinear, time-varying, dynamical system represented

by the vector differential equation

f(x, w, t) (2.1)

where x is the n-dimensional vector of system variables, wis an m-

dimensional input noise vector, and t is the independent variable

representing time.

10

,, 4.1 ,,m m il 
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The input noise vector w(t) has a mean value specified by the m-

dimensional vector %w(t) and a covariance matrix 0wt), which is m by

m in dimension. These quantities may be defined mathematically as

Efw_(t)} I n(t}

ri[wCt) nw(t)] [w(T) - n(T))T I Qw(t) 6(t-T) (2.2)

where SM,) is the impulse function.

The covariance matrix of the state x(t) is defined as

P(t) E{[xt(t) - n,(t)] [XnT) (2.3)

where nxt) is the mean of x(t). The problem is to determine P(t) in

terms of the mathematical description of the nonlinear system in (2.1)

and the properties of the input noise vector given in (2.2).

An Approximate Covariance Analysis

of Nonlinear Systems

The application of the direct covariance algorithm developed in

Chapter I to the rfonlinear system in (2.1) can be achieved as an ap-

proximate analysis. Let U(t) denote the noise-free nominal trajectory

obtained by replacing w(t) by nw(t) in (2.1). It is assumed that the

input noise disturbances cause sufficiently small deviations about

this nominal solution such that nx(t) 
= N(t). Let these small devia-

tions mx(t) be defined by

6x(t) x(t) t) (2.4)

Expanding (2.1) in a Taylor's series about 4(t) yields

6(t) A~t) a(t) + B(t)I(t) (2.5)

Ct) = A~t} ,{t}
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S where af

A(t) --f

- x(t) n M

w(t) w

af

(t) - = (t) (2.6)

rw(t) : wt
}w

The approximation made in (2.5) is that the second and ll higher-order

terms in 6x are negligible when compared to the linear terms. This

approximation is valid if the 6x variations are sufficiently small.

To demonstrate the importance of this approximation, consider the

second-order nonlinear system investigated in (24,25). The system is

described by
2.

x = : -2xl + x2 
+ YX2 sign (x2 )

2 = -x 2 
+ w(t) (2.7)

where w(t) is a zero-mean Gaussian white noise process applied for

all t > 0. Figure 1 shows the results from (24,25) by applying

the direct covariance algorithm as the input covariance Qw was in-

creased from 0.01 to 5. As Qw was increased, the higher-order Sx

variations in (2.5) becdme significant and larger errors were obtained.

Therefore, the arbitrary application of the direct covariance algo-

rithm to nonlinear systems with severe nonlinearities and/or ex-

tremely high input noise levels must be approached with some caution.

I2

-?ii
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Figure 1. Comparisons Between the Direct Covyriance Algorithm
and Monte Carlo Simulations for (2.7)
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Monte Carlo Testing

To validate the accuracy of the computer software package for the !Z

direct covariance algorithm comparisons were made with the Monte

Carlo technique. As a preliminary step, the discretization procedures

for white noise inputs were investigated to determine whether improved

Monte Carlo results could be obtained. Previous methods were based

on the generation of pseudo-random numbers which were then held con-

stant over the discretization interval. The relationships between the

covariance matrix Qd of discrete random sequences and defined in
-d

4 (2.2) is given by
* -

w~ " VI/  (2.8)

where T is the discretization interval. An extensive study was per-

formed by Rowland and Holmes (24) on the above method, and some of

those results are used here to evaluate new methods for the discrete

representation of continuous white noise processes.

A new functional approach to the discretization problem has been

developed in this work, and results are compared with the previous

method in the next section. Suppose several zero-mean random numbers

k are combined on each discretization interval to form a power

series function of time as
K k

do, , 2,. ,K = kt for 0 < t < T (2.9)
.k=O

The autocorrelation function of such a train of pulses is given in A

(26, 27) byK .1

t( - ) for ITI.T
Rww (t,t+T) 8k (2.10)
d d Otherwise
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where is the variance of ak. The associated power spectrali QOk

density is

S WdWd -* e'J 11riit 1 .TI R Ct,t+T)dt]dT

= 2(0 - cos wT) K Tk-l- 2 Q 2k  l(21i W k=O k~ l

Note that the expression in (2.11) takes advantage of the periodicity

of (2.10) and is valid even though the discrete representation of the

given continuous random process is nonstationary.

For the continuous white noise case, the autocorrelation function

in given by the impulse function

Rw(t) = Q6(t) (2.12)

and the power spectral density is determined as

S w(W) Q C Q6(r)e- T  Q w (2.13)

Equating (2.11) and (2.13) yields

K T2k -  T2  T4 2  T6 4

Ow 2 Q+ --- + 72.0. (2.14)
k= k

from which, by setting w = 0, one may form the approximate relationship

K T2k+l ( 5Qw =  Qak (-N7-+) (2.15) i
Sk=

"Vis is one of the new relationships developed to possibly yield a

more accurate discrete representation of continuous white noise pro-

cesses. Figure 2 shows the representation of the continuous and

discrete white noise processes, including sample functions, autocor- .4

relation functions, and the power spectral densities.
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Figure 2. Continuous and Discrete White Noise Representations
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Another method was developed towards the improvement of the

discrete representation of continuous white noise processes. Con-

sider the random process y(t) given by

yCt) A cos(at + 0) (2.16)

where A is a Gaussian random variable with variance a2 and a mean of

zero, a is a constant, and e is uniformly distributed on the range

(0, 2n). A and e are assumed to be independent. It can easily be

shown that

Ry(TI = (1 - cos{cv) for I(IT (2.17)
Spe0 Otherwise

Suppose a discrete random sequence wd~t) is generated by applying

(2.16) on an intervalby-interval basis. This sequence may be used

to approximate a given continuous white noise process as before by

setting

2

A - Cos T (2.18)
TQ

This is the relationship developed for determining the variance of the

discrete model. The simulation results of this method and the method

developed earlier in the section are compared with the numerical re-

sults obtained earlier in (24). The method in 12.8) is referred to

as the standard method, and the method developed in (2.9)-(2.15)

is called the slope method. Furthermore, the alternate method in

(2.16)-(2.18) is referred to as.the cosine method.

-.-- - . -h-- ~' ,~ anatA' '. .- -
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Numerical Results

Consider the second-order, linear, time-invariant system de-

scribed by

X1 -X 2

2 -2x, " 3x2 + w(t) (2.19)

Recursive relationships used to generate the random input se-

quence wd for the above second-order system have the form

Y = GY. (Modulo M) (2.20)

i+l .

Brown and Rowland (28) obtained satisfactory statistical properties
220,

from the pseudo-random number generator with G = 19971, M = 2 and

Yo = 31571. The generated numbers are uniformly distributed on

(0,1). These numbers may be converted into a zero-mean, unity-

variance Gaussian distribution by the exact closed-form relation de-

veloped by Box and Muller (6)

Z = (-2 loge cos 2nYe 2 (2.21)?

Z = (-2 loge Yl) 1/2 sin 21Y 2

where Y and Y are uniformly distributed, and Z and Z are

Gaussianly distributed random variables.

Numerical results for this example are shown in Figure 3 with

2
the average per cent error on the output variance (o ) versus the

I

number of Monte Carlo runs for the three methods being compared.

Using a step size T of 0.05, the standard method utilized pseudo-

random numbers with a variance Qw of QW/T equal to 20. The case
o d

of K =I was used for the slope method with the random variables
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is and aI being given equal weight. Several other cases (K 2,3, and

4) with several alternate weighting methods for the a's were also

simulated, but no significant improvement was obtained. The results

of the cosine method shown in Figure 3 used 2 = 6.44, a = 4u, and

T = 0.05. Different combinations of a and A were also used in

other runs without improvement. Moreover, the use of ZI anu Z2 from

(2.21) in consecutive intervals as opposed to using only Z, as shown

in Figure 3, failed to yield any improvement. Finally, using alter-

nate values of Zl and/or Z2 did not improve the results shown.

Therefore, the standard method was the best of those tested in terms

of accuracy. In addition, the standard miethod requires only a single

pseudo-random number per interval, which results in a particularly

simple implementation as shown in Appendix B.

Summary

The direct covariance algorithm was extended in this chapter for

application to 'inearized variational equations about the noise-free

solution for nonlinear systems. Numerical results showed that the

algorithm is applicable to those nonlinear systems with low input noise

levels and mild nonlinearities. A generalization (29) was proposed for

improving the discretization procedure for simulating continuous

white noise processes on the digital computer. Extensive Monte Carlo

testing on a second-order system indicated that the standard method

developed earlier was both superior in accuracy and the most ef-

ficient for implementation purposes. This efficient discretization

procedure forms the basis for the subsequent Monte Carlo validation

of the computer software package developed in Chapter II.



CHAPTER III

IMPLEMENTATION OF THE DIRECT COVARIANCE ALGORITHM

FOR LARGE-SCALE SYSTEMS

This chapter deals with the large-scale implementation of the

direct covariance algorithm derived in the Chapter I and extended in

Chapter II. A method for obtaining the exact solution for large-

scale linear systems is presented, and the problems in implementing

this solution for large-scale nonlinear systems are identified. The

basic computer software package is developed with a particular

emphasis on its application to large-scale missile systems and is applied

to a thirty-third order math model of a six degree-of-freedom'air

defense missile system. Special problems encountered in the propagation

of noise through the seeker subprogram of the missile are described in

detail.

Exact Solutions for Large-

Scale Linear Systems

The direct covariance algorithm derived in Chapter I is repeated

here for convenience as

P(t) = A(t)P(t) + P(t)AT(t) + B(t)Qw(t)BT(t) (1.10)

In component form, (1.10) becomes

21

. ,,,, .... o 4
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S141 1 - ln pll .P ll Pln' a1"pnl P an, ,a -a nn ,Pal-:Jn ... an,,

+' (3.1)P n I...bnmjqm 1-..q blm ... b

Since Pct) is a symetric matrix, i.e. pij = pi'. the number of com-

ponent differential equations in (3.1) is n(n+l)/2, where n is the

system order.

Equation (3.1) can be solved exactly for constant A and B

matrices. Rewriting (3.1) in the vector form yields

w(t) = A p(t) + r (3.2)

where
(Pll(t)'

PCt) P12(t)

pnn(t)

and Ai and r are functions of the components of A, B, and.Qw in (3.1).

The solution of the linear vector differential equation in (3.2) may

be written as

(t) = eA'(t-to)(t) + {t eA'(t-T) d (3,3)
00

where eA'(t-t 0) is the state transition matrix associated with p(t) in

(3.2). This matrix exponential, sometimes denoted by 0(t-t0), may be

evaluated as

eA'Ct-to) = I + A'Ct-to)+ A'2Ctto)2 + (.. (3.4)

V
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Example

Equatior (2.19) may be expressed in vector-matrix form by identi-

fying

A .. -30 1 1 Qw (1)

Therefore, (3.1) becomes

ll P12  _01 p 1 p1  + 11  p 2
p12  P22 - -3 P12  P22  

1  p12  P22 1 -3

(1J)c) o (0 ) (3.5)

Corresponding to (3.2), (3.5) may be written as

pI l p 1 0 2 0 jp 1 J01p12  -2 -3 1 + (3.6)

0 -4 6 p i
P22 -4 22. 1

Using (3.3), the solution to (3.6) for P(O) = 0 is

1 1 e-2t +_e- 3 t 1 -4t

p~ - -

p(t) e-2t e-3t + 1 e-4t (3.7)

1 1 e-2t + Ae -3t e 4t
2 3

Note that eA'(t-to) has n2 (n+l) 2/4 elements for an nth order sys-

tem, which expands the computer storage requirements considerably

beyond that required by using the matrix equation in (1.10) to solve

for P(t) by numerical integration. For example, if n = 33, then P(t)

may be obtained from (1.10) by solving 561 equations, whereas
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e (  0 would require in excess of one-quarter of a million state

transition matrix element evaluations. Moreover, if A and B are not

constant in time, then the determination of the exact solution of

P(t) in (3.2) is generally not possible. Since some components of

A(t) and B(t) are always functions of time for nonlinear systems, the

use of a suitable numerical integration formula, such as the fourth-

order Runge-Kutta algorithm, is recommended for determining P(t)

from (1.10) in general nonlinear cases.

The Basic Software Package

The considerations that were made during the developmeit of the

software package included obtaining accurate results while using a

minimum amount of computer time, satisfying equipment requirements, 4

such as computer storage, and determining the range of applicability

for the direct algorithm on nonlinear systems.

The covariance matrix equation (1.10) was integrated along the

nominal trajectory by using an integration step size for the covariance

equations initially as half that of the system equations. The coef-

ficient matrix A(t) for the system equations is a sparse matrix in many

applications. For any large-scale system the coefficient matrix

elements may be categorized as either zero, non-zero constants, non-

linear functions of the nominal states, or implicitly related to the

nominal states. For example, the thirty-third order missile system

considered here had 920 zero coefficient matrix elements, which were

neglected during program computations. In addition, constant elements

were defined in the beginning of the program and left unchanged

thereafter. The coefficient matrix was computed at each integration
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interval along with the nominal solution to yield a considerable

savings in computer storage over the method of storing the A(t) matrix

for all time t. Thus, each nonlinear element of A(t) was updated -.

during each interval. Finally, those coefficient matrix elements which

are related to certain state variables only implicitly, i.e. the

functional relationship is available only via complicated computer

programmed statements, were computed numerically at each interval.

Additional details will be provided following the description of the

large-scale application in the next section.

The application of the direct covariance algorithm to the thirty-

third order nonlinear missile system yielded only approximate results

- because the accuracy of the direct covariance algorithm for nonlinear

systems depends entirely upon the relative accuracy of the linearizing

approximation for incremental variations about the noise-free solution.

The error in the direct covariance results increases as the nonlinear
terms in the exact incremental equation become more significant. The

time-varying coefficient matrix prohibits the use of the state transi-

tion matrix equations. Thus, an accurate numerical integration tech- V
nique was needed to integrate the n(n+l)/2 equations for the symmetri-

cal covariance matrix.

The basic approach in the development of the software package is

shown in Figure 4 in the form of a flow chart. The Fortran listing

of this computer software package applied to a thirty-third order math

model of a six degree-of-freedom air defense missile system is given

in Appendix C.

---"
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Description of the Missile System Application
II

The large-scale system investigated here is a thirty-third order

math model of a six degree-of-freedom air defense missile system. The

autopilot subprogram is fifteenth-order, the airframe subprogram which

includes the missile rotational variables, the translational equations

of motion, and launcher dynamics is twelfth-order, the seeker is second-

order, and the actuator subprogram is fourth-order. The block diagram

for the thirty-third order missile system is shown in Figure 5 with

details of the autopilot and actuator in Figure 6. The target routine

shown in the figure calculates the target-to-missile relative position

and speed and generates line-of-sight signals.

Table I identifies all states of the missile system and assigns

a specific number to each state. For example, the missile altitude Z

is defined as the twenty-first state and occurs in the airframe

subprogram. Table II provides the complete categorization of all

elements of A(t) as either zero, indicated by blank entries, constant

values (C),nonlinear functions of the nominal trajectory (NL), or

numerically computed (NC). The number and per cent contained in each

category are sumarized in Table III.

,Imputations for Implicitly Related Elements

Only those elements of the A(t) coefficient matrix which are

implicitly related to certain variables are computed numerically. For

the thirty-third order math model of the six degree-of-freedom air

defense missile system, the numerically computed elements are denoted

in Table III by NC. The state identification of these state variables

- 1
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TABLE I

DEFINITION OF THE MISSILE SYSTEM STiTE VARIABLES

Subprogram Description of State Iden- State Iden-
State Variables tification tification

Name

I. Autopilot Guidance Pitch ZPl I

Filter ZP2 2
ZP3 3

Guidance Yaw ZYI 4
Filter ZY2 5

ZY3 6
Roll Compensa- ZRI 7
tion ZR2 8

BPHIS 9
, Pitch Integra- ZPIl 10

tor ZPI2 11
EODCR 12

Yaw Integra- ZYIl 13
tor ZYI2 14

3 EVNCR 15

II. Airframe State Variables UE 16
for Evaluating VE 17
the Transla- WE 18
tional Equa.- X 19
tions of Missile Y 20
Motion. Z 21

Missile Rota- PB 22
tional Variables QB 23

RB 24
Euler Angles THETA 25

PHI 26
PSI 27

III. Actuator Vane Module vv(l) 28
Variables VV(2) 29

VV(3' 30
VV(41 31

IV. Seeker Internal States VS( 32
VS (2) 33
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TABLE I I

COEFFICIENT MATRIX FOR THE MISSILE SYSTEM
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TABLE III

CATEGORIZATION OF COEFFICIENT MATRIX ELEMENTS

Categorization Number Percentage

Zero 920 84.5%
El ements

Constant 52 4.8%
Elements

Nonlinear 38 3.5%
Elements

Implicitly 79 7.2%
Related
Elements

Total 1089 100.0%
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is given in Table I. The elements labelled NC* in Table III are com-

puted to modify the derivatives when launcher dynamics of the missile

system are in effect and are equated to zero after the second lug

leaves the launcher. Numerically, the partial derivatives for A(t) in

(2.6) are given by

i(- + Ax, nw , t) - f(xt)
2N wt

A(t) = (3.8)
AX

where the notation Ax represents small perturbations about the nominal

flight path 2i(t). These perturbations have small lower limits when

P(t) is very near zero, but AX is increased by adding one-tenth of the

standard deviation of the particular state under consideration when

P(t) is set near zero. Therefore, the numerically computed elements

of A(t) result in an adaptive feature for the direct covariance algo-

rithm.

The large number of sequential calculations for the noise propa-

gation equations results in numerical problems which can be handled

most effectively by using double-precision throughout. To avoid these

time consumina operations, the elements in a particular column of

P(t) were arbitrarily set to zero whenever the corresponding diagonal

element was below 10l-0.

Seeker Noise Considerations

For the noise propagation studies, the noise was introduced at

four places in the missile system, The first two places are shown in

Figure 6, and the other two white noise inputs were added to the

seeker subprogram of the missile system. These latter two noise

inputs involved perturbing the line-of-sight signals 'LOS (BEPSZ) and

OLo (BEPSY) generated by the target subprogram as shown in Figure 5.

~
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These noise signals were passed through the dead-zone as shown in

Figure 7. Two subprograms which were developed to obtain the variance

of noise after passing it tilrough the dead-zone are included in

Appendix Cas Subroutines SNOISE and DETARA. These subprograms utilize
I the three cases depicted in Figure 8 in which the nominal values of

BEPSZ or BEPSY lie below -TMPI, between -TMPl and +TMP1, or above

+TMPl. The density functions of EZ and EY are each composed of three

impulses at SKSP or SKSY, zero, and -SKSP or -SKSY. The weighting on

each of these impulses is determined by the area of the Gaussian

input signals lying within the different ranges of the dead-zone

nonlinearity as shown in Figures 7 and 8. The calculation of this area

is performed in Subroutine DETARA. It should be emphasized that the

dead-zone is a very harsh nonlinearity, which can result in a severe

test in applying the direct covariance algorithm. However, the seeker

noise was injected at this point in the system because such noise dis-

turbances do occur in the actual missile system.

The operation of Subroutines SNOISE and DETARA is described here

to demonstrate how to handle noise propagation across a dead-band relay

* element. Card 16 defines SIGBEP in terms of the seeker noise input

standard deviation (VNOISD), SGTMPI, and VBEPS. The latter two terms

are standard deviations of the noises due to the random effects of the
position coordinates X, Y, and Z and the seeker state variables,

respectively. Cards 10 through 15 yield the expression for SGTMP1

in terms of the covariance matrix associated with the X, Y, and Z

states. It has been assumed that these states are Gaussianly distributed

and, therefore, that their fourth central moments are equal to three

times their respective variances. Similarly, the contribution of
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the noisy seeker states are handled by using the same procedure. Cards

17 and 27 identify the region of operation of the seeker relays.

For example, if the relay output EC equals -SKSP, then the relay is

switched to the negative region as shown in the upper diagram of

Figure 8. The distance DIST between BEPS, which represents the

mean of either BEPSZ or BEPSY depending on which of the two seeker

relay nonlinearities is being considered, is defined in Card 18 as

DIST = -TMPl - BEPS. Normalizing this Gaussian density curve by

dividing by the standard deviation SIGBEP to give POS, one may

use standardized Gaussian density tables to determine the area under

the curve below -TMPI, the area between -TMPl and +TMPI, and the

.area above +TMPl. Specifically, Card 20 yields the desired area

(ALI) from Subroutine DETARA. Note that the total probability of

BEPS lying below -TMPl is one-half plus that area just determined

from DETARA (Card 21). Card 22 defines POS for the curve between

the actual BEPS and +TMPI. The resulting area (AOl) is the sum of

ALl determined above and the desired dead-band area AO. Therefore,

AO = AOl - ALl as given by Card 24. Moreover , since the sum of the

total area under the curve is unity, the probability that BEPS lies

above +TMPl is AU = I-AL - AG (Card 25). Similarly, the probabilities

associated with the other cases shown in Figure 8 may be calculated.

Finally, Cards 45 through 47 compute the mean of EC (SIGEC), the

second moment of EC (SGSEC), and the variance of EC (SGSQ).

Summary

The general framew'ork for implementing the direct covariance

algorithm for large-scale systems has been described in this chapter.

Numerical results to be presented later have indicated that the two
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seeker nonlinearities are of major importance in determining nonlinear

operating characteristics of the thirty-third order missile system.

In particular, for seeker input noise variances of (2 degrees) 2 , the

direct covariance algorithm is applicable to a large range of operations

during the mid-portion of a typical flight. Chapter IV describes

the details of a digital computer software package which combin s

Monte Carlo runs for the first and last parts of the flight with

direct covariance algorithm results for the mid-portion of the flight.

Numerical results from this combined program are then presented in

Chapter V.

-4 -

4

t



CHAPTER IV

COMBINED MONTE CARLO - DIRECT COVARIANCE

ALGORITHM SOFTWARE PACKAGE DESCRIPTION

The digital computer software package is described in this chapter

initially in terms of a computer flow chart of the complete program.

The general effects of incorporating the direct covariance algorithm

into an existing digital computer program are identified, and subroutines

are grouped according to whether major or minor changes are needed to

realize the combined algorithm. Finally, details of these changes are

provided, and a description of the resulting control cards is given

for a variety of simulation run conditions.

Computer Flow Chart

General computer software operations are described in Figures 9

through 12.. The basic diagram for all operations is shown in Figure 9,

while nominal flight conditiors, Monte Carlo simulations, and covariance

calculations are given in Figures 10, 11, and 12, respectively. The

combination simulation run indicated as a fourth option in Figure 9 is

obtained by using appropriate control cards which combine the operations

described in Figures 11 and 12 over designated portions of the flight.

Subroutine Descriptions

The type; of changes needed to convert a digital computer program

which yields only nominal trajectory information, i.e. without noise,

are i dicated in Table IV. Descriptions of these changes in individual

subroutines are provided in the following paragraphs.

39
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TABLE IV

SUBROUTINE CLASSIFICATION

MAJOR CHANGES MINOR CHANGES NEW SUBROUTINE NO CHANGE

MAIN SYSRUN INTA2M AUTOPT

TARGET SEEKER SNOISS PRDATA

SYSINT VANEMD RANDU ROTATM

TRANSM RANDG DTLUXI

AERODY RUNGKP FUNCTION
DEAD

BLOCK DATA COEFF FUNCTION

XLIMIT

THRCON COVAR

DETARA TRANS

MDERIV RK4

INITIA

INTRP3

4-

9~
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MAIN

Subroutine MAIN takes care of all the initializations of the

variables used during the flight. The run could be made as Nominal,

Covariance, Monte Carlo or their combinations with proper initializations

F , given by Cards 149-168 and 180-203. Cards 171-177 are initialized de-

pending upon the type of run chosen. Cards 136-146 are used to read the

initial values of the variables from the cards and to write them on the

disc to be used later in the program for re-initialization during Monte

Carlo runs. In Cards 206-243, various variables are initialized which

are used in the program. The Thrust and Aerodynamic Tables are read

in Cards 247-266. The initialization Subroutine INITIA is called

in Card 272. The initialization for Monte Carlo runs are made in Cards

274-302. NUM number of Monte Carlo runs are made in Cards 303-355. The

(NUM+l)th (NUM = number of Monte Carlo runs) entry in the DO loop is for

re-initializations of the variables. Cards 357-375 are used to calculate

ensemble averages and for print-out. The off-diagonal multivariate

samples are generated for Monte Carlo simulations from specified

covariance matrix calculations in Cards 383-399 and 418-420. If

VTIME2 is greater than or equal to TSTOP, then in Card 381 the program

is diverted to Card 465. If Monte Carlo runs are made in the latter

part of the trajectory, Cards 401-455 make (NUM-I) ,uns and Card 380 makes

the first run resulting in a total of NUM number of runs. The ensemble-

averaging and print-out is achieved by Cards 456-464.

TARGET

In this subroutine Cards 51-79 have been added to calculate the

variances of BEPSZ and BEPSY and their effects are incorporated into

Subroutine SNOISE (Card 16). The details of Subroutines SNOISE and

.........
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DETARA have been given already in Chapter III of this report. The

values of the variances VBEPSZ and VBEPSY are transferred to Subroutine

SNOISE through Subroutine SEEKER in Cards 9, 22, and 28. Cards 51

and 52 allow the calculation of variances only for the covariance pro.

gram. Cards 54-69 are used to break up the long expression of VBEPSZ

and VBEPSY in Cards 70-74 and 75-79, respectively.

SYSINT

This subroutine calls the integration subroutine (RK4) to integrate

all the state variable differential equations over one time step. This

routine also calculates the nonlinear "A" matrix elements for the

covariance program. The calculation of implicitly related "A" matrix

elements are calculated by calling Subroutine COEFF. The direct covariance

algorithm is obtained by calling the COVAR subroutine and -s integrated

by calling RUNGKP, which uses the RK2 integration method. For the

calculation of the state mean and variance by Monte Carlo runs, the

values of'the state variables and their square are stored at different

points in time and the ensemble average is calculated in MAIN.

Cards 17 to 32 have been added to transfer the variables to other

subroutines as explained in the previous paragraph. Cards 36 to 56

are used to store the values of state variables at time VTIME2 to make

Monte Carlo runs. Also, these values which were stored at time VTIME2

are printed the first time through the program. Cards 59 to 67 are

used to calculate four normally distributed random. number with unity

variance and zero mean for Monte Carlo runs. These numbers are used

in the VANEMD and TARGET subroutines. Cards 86 to 220 are used to

calculate the nonlinear "A" matrix elements only the first time through

the program. Cards 230 - 259 are used to calculate and integrate the

covariance matrix, to check for negative diagonpl elements, and for

-4'
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prirt out. Cards 261-281 are used to store the state variables and

their squares at different points in time for Monte Carlo runs. These

values are stored whenever Nl equals Kl in Card 264. Cards 282-294

are used to store the value of state variables only at the switching

time VTIMEl, which is needed to calculate off-diagonal terms of the

covariance matrix. Cards 295-296 are used to store the time at which

the state variable values were accumulated to find the ensemble-average.

SYSRUN

Only a few changes have been made in this subroutine. In Card 26

the value of KIT is initialized to zero in MAIN and transferred by a

conmon block in Card 21. This value is changed only in Subroutine

SYSINT Card 40 when the program is switched from covariance to Monte

Carlo to see that the aerodynamics routine, derivatives and target position,

etc., are not initialized when Monte Carlo runs are made for T greater

than VTIME2. Card 63 makes sure that the K is reinitialized to I because

the program bypassed Card 53. Cards 120-123 are used to control the

program for Monte 2arlo runs. The value of KONTER is altered only in

Card 122. Once it attains the value equal to NUM, then KONTER is not

ft altered thereafter. Cards 146-151 are used to print out the covariance

matrix at that instant in time.

SEEKER

In this subroutine Cards 8- 10, 20-23, and 26-29 were added to Insert

noise into the seeker, and Subroutine SNOISE is called to calculate

the mean and variance across the nonlinearity. These values are only

calculated when the covariance program is in operation. Otherwise,

these cards are bypassed.
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VAUIMED

In this routine noise is added in the vane modules when the Monte

Carlo program is run. In Cards 15-18, normally distributed random

numbers are calculated in Subroutine SYSINT by calling RANDG.

T P P4SM

Card 25 is used while calculating implicitly related "A" coefficient

matrix elements in the COEFF subroutine. The value of KK is

initialized in MAIN to 1 and is only altered in COEFF and then again

replaced by 1 at the end of the COEFF Subroutine. In Card 65 when KK3

is not equal to zero the program returns to the calling subroutine.

KK3 is initialized in MAIN to zero and is passed through the common

block Card 18. The value of KK3 is modified only in the COEFF subroutine

and is replaced by zero at the end of this subroutine.

AERODY

Only two cards were added to this routine: Cards 19 and 23.

The value of KK5 is passed through the common block in Card 19. The

value of KK5 is initialized to zero in MAIN. This value is only modified

in the COEFF subroutine for the calculation of the implicitly related

"A" coefficient matrix elements. The value of KK5 is replaced by

zero at the end of the COEFF subroutine.

BLOCK DATA

Cards 9 and 10 were added to initialize the step size and the

number of state variables duaoted by H and MS, respectively, in Card

9. The step size H is not used at present in the program but MS is

used at various places throughout the program mainly for DO loops.

St
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THRCON

Card 13 is added in the routine to preserve the values of THRP

and TIMP while making calculation for "A" matrix elements in Subroutine

COEFF. These values are preserved in COEFF by transferring them to

other variables and replacing them at the end of calculations.

INTA2M

This new subroutine initializes the constant elements of the "A"

matrix only once in the MAIN program through Card 243.

RANDU

This program generates normally distributed random numbers with

zero means and unity variances. The random numbers equal in number

to the number of state variables are generated and passed through variable

YNORM to MAIN by Card 417. These are used for Monte Carlo runs after

time VTIME2 to give random normally-distributed starting conditions

at that point in time.

RANDG

This program also generates normally distributed random numberE

with zero means and unity variances. These numbers are transferred

through variable XNORM when called in Subroutine SYSINT through Cards

64 and 67. These normally distributed numbers are used to insert

noise in the vane modules and the seeker during Monte Carlo simulations

at locations in VANEMD by Cards 15-18 and in TARGET by Cards 48 and 49.

RUNGKP

This subroutine is an integration routine and the RK2 method of

integration is used to integrate n(n+l)/2 equations where n is the

number of state variables. This routine is called in SYSINT (Card 236).
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The value of DTH is transferred from SYSINT via Card 231.

COEFF

This subroutine calculates the implicitly related "A" matrix co-

efficients. In all, 79 elements are calculated in this routine. The

values of the KK's are defined in Cards 38-42. These are used throughout

the program to control the required calculation of the "A" matrix elements.

The nominal trajectory is perturbed slightly (Cards 43-46) to calculate

the effect of this perturbation and thus obtain the "A" matrix elements.

Card 47 sends the routine to Card 69 to store and preserve the nominal

trajectory variables so that those values can be replaced after the

calculations. Card 116 then sends the program to Card 342 to calculate

the effect of the perturbation. In Card 358, Subroutine MDERIV is called

only if LAUNCH is one or two. The "A" matrix elements denoted by NC

in Table II on Page 31 are equated to zero after LAUNCH is greater than

2 only once in Cards 362-366. Since the value of KK4 is one, the

program goes from Card 359 back to Card 183. In Cards 183-191, the

next value of the state variable is perturbed and the program goes

to Card 117,where the A matrix elements are calculated. Since KK3

was 7, the program goes to Card 138 to replace the values of those

variables which were stored and preserved earlier. The program again

goes to Card 69 from Card 182 to repeat the same procedure for the

next state variable.

CO VAR

In this program the covariance algorithm is implemented. Since

the P matrix is symmetrical, the lower triangle of the P matrix is

equated to the upper triangle in Cards 11-13. In Cards 14-94 the AP
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matrix is calculated. In Cards 95-97 the PAT matrix is obtained.

Cards 98-100 give the AP + PAT matrix. The BQBT terms are added in

Cards 101-111.

MDERIV

This subroutine has been added to modify the derivatives when the

launcher dynamics are in effect. It is called in the COEFF subroutine

(Card 358) during the calculations of the implicitly related "A"

matrix elements. This program is a part of the ROTATM subroutine (Cards

49-72) with a change of variables.

Summary

The details of the combined computer software package have been

presented in this chapter. Flow charts have been provided to describe

the nominal flight, Monte Carlo simulations and the direct covariance

algorithm. It should be pointed out that Cards 149-203 in MAIN

describe the necessary modifications to run any of these cases,

including the combination run. Numerical results using this software

package are given in the following chapter.

44
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CHAPTER V

NUMERICAL RESULTS

Both preliminary and final numerical results are presented in this

chapter for the six degree-of-freedom air defense missile system

described in Chapter III. Initially, tradeoff considerations and simpli-

fying approximations are given. Direct covariance runs on the range

from one to two seconds into the flight are then presented for modifications

yielding from thirty-first up to fifty-first order missile systems.

Core and speed requirements for these different systems are identified.

It is shown that the initial and terminal portions of the flight are

too nonlinear for the application of the direct covariance algorithm

and, therefore, that Monte Carlo simulations must be utilized on these

highly nonlinear segments. Final numerical results are presented for

the entire flight by using the combined software package of Chapter

IV.

Tradeoff Considerations

The considerations that must be made during tradeoff studies

are closely related to the criteria for comparison purposes presented

in Chapter I. Since the information provided and the extension pos-

sibilities are fixed by selecting the direct covariance approach, only

the remaining criteria of accuracy, computational speed, computer

storage, and program complexity may be used for tradeoff possibilities.

52
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Accuracy

Accuracy plays a major role in achieving computational efficiency,

since it has an inverse relationship with the computational speed. For

example, trading accuracy for computational speed by changing the inte-

gration method from the fourth-order Runge-Kutta formula (RK4) to the

second-order Runge-Kutta formula (RK2) may reduce the computation

time considerably for large-scale systems. In any simulation problem

the minimum acceptable accuracy level limits the maximum integration

step size that may be chosen. Tradeoffs for the large-scale system

are also influenced by the fact that direct covariance technique gives

exact results for linear systems while the errors in the results of

nonlinear systems depend on the amount of nonlinearity and the input

noise level. In addition to the choice of integration method and the

t selection of the step size, the frequency at which the coefficient

matrix is updated affects the algorithm accuracy.

Computational Speed

Tradeoffs may be used to minimize the computer time needed for

the large-scale simulation and the application of the direct covari-

ance algorithm. For the developed software package, the integration

time needed for the covariance matrix equations may be reduced by

nearly one-half by changing the integration method from RK4 to RK2, as

mentioned earlier. A savings in computer time is also obtained by

categorizing the coefficient matrix elements as zero, constants,

nonlinear, and implicitly related to the state variables. Since the

A(t) matrix is usually a sparse matrix, many coefficient elements are

4. zero and thus neglecting them entirely during the calculations

4 "!!
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reduces the computer time considerably. Table III summarizes this

categorization for the thirty-third order missile system described in

Chapter III. Finally, further reductions in computational time may be

achieved by calculating the A(t) coefficient matrix elements after

every few integration intervals instead of every integration interval.

Computer Storage

The computer storage needed for applying the software package to

the large-scale system can also be reduced by tradeoff. The general

implementation of the direct covariance algorithm for large-scale

systems requires a much higher computer storage as compared to a par-

ticular implementation. For an nth-order system, storing the large

At) and B(t) matrices requires a large amount of computer storage.

This may be reduced by deleting the zero elements and either con-

verting these matrices into smaljer matrices or to vector form. How-

ever, this procedure would tend to increase the complexity of the

computer software package.

Program 'omplexity

The program complexity is another measure of an efficient computer

software package. The general implementation of the direct covariance

algorithm may reduce the program complexity to a minimum, whereas a

particular implementation makes it quite complex. The complexity

also increases, as noted above, by converting A(t) and B(t) in smaller

matrices or vector form. Thus, a balance must be reached by trading

accuracy, computational time, computer storage, and program complexity

to provide a computationally efficient final software package.

N



55

Program Simplifications

Simplifying approximations were used for speeding up the direct

covariance program. The use of constant coefficients in place of

slowly-varying coefficients in the variational equations and neglecting

extremely small coefficients entirely were approximations that were

examined. In particular, 28 of the 38 nonlinear elements of the

incremental coefficient matrix A(t) were held constant throughout

the flight period of interest without a serious degradation in

results. Furthermore, 18 of the 79 numerically computed elements were

also simpli.",ed, and their effect was negligible on the performance

of the direc'c covariance software package. Finally, the possibility

of computing the "A" matrix elements at different varying intervals

was investigated, but it was shown that the necessary overhead operations

made such a procedure unfeasible.

The calculation of all "A" matrix elements automatically i.e.

numerically, was shown to require a computation time that was much

too long. However, such operations yield, in general, the simplest

possible program. For a fifty-first order missile system, this simplest

program for computing all 2601 "A" matrix elements requires approximately

27 minutes on the Sigma 5 Computer for computations in the range

between 1 second and 1.1025 seconds into the flight. The minimum

computational time possible was only approximately 5 minutes obtained

by using constants and nonlinear expressions wherever possible as

indicated by Table III in Chapter III. Also, the zero elements

were not computed. The resulting program was obviously more complex

than the general program. An intermediate possibility which required

approximately six minutes for the given calculation was also identified

.. . .
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by eliminating a large number of the zero-element calculations but

including certain of these elements when they are grouped within a

given block of non-zero elements. For the direct covariance algorithm,

approximately 36K words of core (including the monitor) are needed

to perform noise propagation calculations for systems up to fifty-

first order.

Preliminary Numerical Results

Significant problems were encountered in implementing the direct

covariance algorithm for the initial portion of the flight. These

problems are discussed in detail later in this section. Because of

these problems, comparisons between Monte Carlo simulations and co-

variance runs were made on the range between one and two seconds into

the flight. Numerical results are shown in Figure 13 for several orders

of missile systems.

The thirty-first order system was obtained from the thirty-third

order system in Figure 5 by neglecting the dynamics of the second-

order seeker subprogram. The thirty-seventh order system included

the addition of two second-order filters (pitch and yaw rate gyros)

in the autopilot. Tests were also made by using two seventh-order

colored noise prefilters for the actuator noise inputs to yield a

fifty-first order system. The comparisons between Monte Carlo simulations

and these covariance results indicate that existing errors may be

attributed to the use of only 25 Monte Carlo runs. These tests were

2
made by using seeker input noise signals with variances of (2 degrees)

which are later shown to yield excessive miss-distances. The seeker

characteristics used earlier in a terminal homing simulation on the
hybrid computer at the U. S. Army Missile Command had noise variances
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22on the range between (0.15 degrees) and (2.0 degrees)2. However
noise inputs at the lower level of this range yielded poor comparisons

between Monte Carlo and covariance results.

It was shown that for seeker input noise variances of (2 degrees)2

the direct covariance algorithm could not be used for either that

part of the flight up to one second or that part beyond twelve

seconds. In those regions of operations, harsh nonlinearities prohibited

the necessary linearizing assumption described in Chapter II.

Finally, the computational times and core requirements are given

in Table V both for the one-to-two second interval and for the entire

missile flight of approximately 12.9 seconds. These numbers are based

on the assumption that the direct covariance algorithm would be used

for the entire flight. Since this essumption has been shown to be

invalid, these computational times will be increased for the combined

computer software package described in the following section.

TABLE V

COMPUTATIONAL TIMES AND CORE REQUIREMENTS I

Computational Time (Minutes)
Core

System Part of Flight Entire Flight Requ rements
Order (1.0 to 2.0 seconds) (0 to 12.9 seconds) (Words)

31 5.2 41 27K

33 5.6 44 28K

37 6.2 49 31K

51 9.1 72 36K

-I
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Numerical Results for the Total Flight

The combined Monte Carlo-direct covariance computer software

package was run on the existing computing equipment at the U. S. Army

Missile Command for the entire missile flight of 12.9 seconds. The

computer run time, which included 25 Monte Carlo runs for certain

portions of the flight, was approximately two and a half hours. It

was shown above that both the launch segment and terminal mode of

the missile flight are too nonlinear for the application of the

covariance algorithm. Therefore, the sequential application of tne

Monte Carlo program for the first second, the covariance program for

t = 1 to t = 12 seconds, and the Monte Carlo program for the final

0.9 second has been utilized to form the completed software oackage.

The 2 1/2 hour run time for the combined program would be reduced to

only approximately 45 minutes (Table V) if the missile nonlinearities

had been mild enough to permit the use of the covariance algorithm

on all parts of the missile flight. On the other hand, approximately

5 hours would be required for a complete Monte Carlo evaluation of

25 runs on the given system. How , a much larger number of runs

(at least several hundred) would be needed to yield the high

accuracy obtained by the covariance algorithm during the mid-portion

of the flight.

Final numerical results for the total flight of approximately

12.9 seconds are given in Figures 14 and 15. Figure 14 shows the

variances of X, Y, and Z as functions of time for the range on which

the direct covariance algorithm is used. This curve demonstrates that

the state covariance matrix elements of interest, i.e. P(19,19), P(20,20),

and P(21,21), each increase monotonically on the given range. Figure
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15 shows a sketch of the probability distribution function of the miss-

distance obtained from Monte Carlo runs in the terminal mode of the

flight. It is apparent from Figure 15 that the seeker input noise

levels of (2.0 degrees)2 were considerably too large to yield reasonable

miss-distances.

Correlated multivariate samples from a Gaussian density function

equal in number to the order of the system were generated to yield

the appropriate random state at t = 12 seconds for Monte Carlo sir.;u-

lations during the terminal mode. These samples were obtained by

generating n unity variance independent Gaussian random numbers (xi)

by standard procedures. As shown by Marsaglia(30), the desired cor-

related random numbers (yi) may be obtained from the triangular trans-

formation

: Yl = gl IXl

2 = g12X1 + g22 x2

Y gl3xl + g23x2 + g33x3  (5.1)

Yk = glkXl + g2 x2+ ... ... + gkkXk

where the desired covariance matrix R is used to solve for G from

R = GGT (5.2)

It can be shown (30) that the resulting elements of G satisfy

g1 1 = 7i

gll= r / 1 _

i -I = (r ' 2 > 1 (5.3)ii (ri-Z gm)i >1

i-I m=l

= (r. - I gigm-)/gi

= 0, j<i
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These calculations are included in MAIN by Cards 383-399 for the thirty-

third order missile system, and the results are used in Cards 418-438.

The mildly nonlinear segment(s) of the missile flight which are

amenable to solution by the direct covariance algorithm are affected by

the nonlinearities themselves and the input noise levels. In particular,

noise levels of (2 degrees) on the seeker nonlinearities were used

to obtain the results reported above. It has been shown that the region

of applicability for the covariance algorithm is decreased as these

noise levels are decreased. Though complete data is not available, the

sketch in Figure 16 indicates typical results which one may expect.

For example, levels of (0.15 degrees) 2 yielded inaccurate covariance

results for the range t = I to t = 2 seconds. However, excellent

2results were obtained on this range for (2 degrees) , but excessive

miss-distances result frcm such large noise levels. While the combined

software .package has exhibited excellent accuracy and computational

speed properties for this case, its use on cases yielding acceptable

miss-distances will depend on the harshness of the predominant system

nonlinearities as well as the exactness of the simulation model itself.

t (20)2
Seeker
Input Direct Covariance
N o i se Di
Variance Monte Algorithm Monte

Carlo Carlo

S0 ". -

0 flight time -s tf

Figure 16. Sketch of a Typical Range of Applicability of
the Direct Covariance Algorithm
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Summary

Preliminary and final numerical results have been presented for

the six degree-of-freedom air defense missile system. The direct

covariance algorithm implementation was verified by comparing with

25 Monte Carlo runs on the range from t = I to t = 2 seconds. There-

after,a combined computer software package was formed by using the

direct covariance algorithm on the mid-portion of the flight between

t = l and t = 12 seconds and the Monte Carlo technique on the launch

and terminal parts. Finally, it was indicated that the range of

applicability of the direct covar 4ance algorithm decreased significantly

for the given missile system for lower values of seeker input noise
v n

~variances.
* ,

!,k
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CHAPTER VI

FINAL GUIDELINES

A combined Monte Carlo-direct covariance digital computer software

package for missile system analysis has been developed and tested. The

completed software package is capable of handling noise propagation

calculations for large scale-missile systems up to approximately

50th order. This computer program has been tailored for use on the

existing Sigma 5 equipment at the U. S. Army Missile Command. In

particular, the most important considerations are the resulting accuracy,

computer core requirements, and program complexity. Since 48K words

of core storage are presently available, the combined software package

can be used without modifications for lower core requirements (Table V)

on large-scale missile systems at the U. S. Army Missile Command.

Accuracy levcls have been established for the six degree-of-

freedom air defense system described in earlier chapters of this final

report. It was shown in Chapter II that the use of only 25 Monte

Carlo runs should be expected to yield errors on the order of 30%

to 35%. Figure 14 in Chapter V shu.Js that the direct covariance

algorithm results differed from the results from 25 Monte Carlo simulations

by approximately 30%. Therefore, the accuracy of the direct algorithm

was established for the mid-portion of a typical flight. This same

comparison technique indicated that Monte Carlo simulations should

be used for the launch and terminal modes. Therefore, a combined

Monte Carlo-direct covariance package was developed for use on a

wide range of typical missile systems. Some simulation experience

is needed on a given application to determine that part of the flight

"~AA~-- - . A' ~ S.~--
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for which the direct covariance algorithm should be used. This

experience is usually obtained during the initial simulation effort

for the noise-free case,

Tradeoff possibilities with respect to accuracy, computational

speed, computing equipment requirements (including storage), and program

complexity were examined. It was shown that the RK2 integration

formula represented an efficient tradeoff between speed and accuracy

,'r :ovariance matrix calculations. The use of a general program for

com . t;:: all elements of the "A" matrix was found to be inefficient.

A more suitable approach involved the use of constant elements, nonlinear

elements, and implicitly related elements in the proper framework.

The resulting program was somewhat more complex in format, but the

savings in computational time was significant.

Finally, simplifying approximations were developed to speed up

the operation of the combined software package. Constant coefficients

were used to replace slowly-varying elements of the "A" matrix. It

was shown that during the large mid-portion of the flight, where the

direct algorithm was applicable, an important approximation involved

the propagation of noise through the seeker relay nonlinearities.

Output variance calculations for these relays were achieved from

Subroutines SNOISE and DETARA. If corresponding calculations could

be performed for the large number of nonlinearities in the launch and

terminal modes of flight, then the direct covariance algorithm could

be utilized over a larger range of the total flight. As indicated

in Figure 16 of Chapter V, the applicability of the direct covariance

algorithm is also determined from the noise input levels. The proper

handling of these nonlinearities will yield for given applications
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even greater improvements by using the combined software package.

Related Work

Comparisons between the combined software package described in

this report and other approaches to noise propagation in large-scale

nonlinear systems are provided in (33). Results on sensitivity analysis

for noise propagation problems are included in (34). Both of these

papers, as well as others, are reproduced in Appendix A of this report.

As suggested in Chapter I, an immediate extension of the noise

propagation capabilities of the combined software package to filtering

applications is possible. In particular, the subsequent development

of an efficient software package for valman filtering as a practical

estimation algorithm is recommended.

4i
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REPRINTS OF SELECTED PAPERS

This appendix contains the reprints of five selected journal

and conference publications which are closely related to the work

of this contract. The first of these papers, which has been listed

as Reference (25), describes the application of the direct covariance

algorithm to computer-aided electronic circuit analysis and design.

This journal publication is based on results presented earlier in U. S.

Atmy Technical Memorandum RG-TR-71-19 (Reference (24)). An extension

of other results in Reference (24) on sequential covariance matrix

calculations was presented as a conference paper at the 1972 Southwestern

IEEE Conference in Dallas, Texas. This paper, listed as Reference

(31), is included as the second reprint in this appendix. The third

reprint, Reference (32), describes a general formulation of the optimal

digital simulation problem discussed for specific cases in Chapter

II of this report. A brief survey of noise propagation techniques

for large-scale nonlinear systems is included as the fourth reprint

(Reference (33)). Finally, the fifth paper included here describes

a stochastic algorithm for sensitivity analysis. This new result

(Reference (34)) provides error tolerance bounds on covariance matrix

elements due to incompletely specified input noise variances.
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A direct covarianee algorithm is presented for handling problems of component
tolerance analysis and random input variations with a particular emphasis for
utilization in computer.aided statistical electronic circuit design. It is shown that
this result ii applicable to a wide range of electronic circuit arrays having non-linear
components. Moreover, a systematic procedure is developed for predicting in
advance the expected accuracy. Numerical results comparing the direct covariance
algorithm with up to 1000 Monte Carlo ensemble.averaged computer runs are
provided. Contrary to popular belief, errors of 10 to 25% are obtained by u-'ng
25 to 100 Monte Carlo runs. Improvements in both accuracy and computational
speed clearly demonstrate that the direct covarianco algorithm is a versatile and
ef(ective comtu.o-r.aided design tool.

1. Introduction

Noise problems inherent in practical circuit designs are frequently identified
only after the basic design has been completed and production testing has
begun. Rarely do statistical performance design requirements proceed parallel
with other design requirements. A first step in establishing these statistical
design requirements is the development of a fast, effective statistical analysis
tool for use during the preliminary design. While the traditional Monte Carlo
method provides acceptable statistical results by using a sufficiently large
number of digital simulation runs, its frequent use during the design stage
can become prohibitively expensive. As a circuit array increases in size and
complexity, digital computer time for a single simulation run goes up very
rapidly. Repeated runs further increase the computational time and associ-
ated computer costs. An efficient, easily applied, statistical analysis technique
having a reliable accuracy is needed to pinpoint potential noise problems
during the developmental stages of electronic circuit design.

The increasing emphasis on statistical analysis techniques in computer-
aided circuit design has resulted in expanded programmes for handling problems
in component tolerance analysis, modelling, and simulation. For example, an
extensive continuing programme in computer-aided statistical circuit design
has been described by l)ickieson and Chernak (1971). Smmenlman et al.
(1971) and Cermak and Kirby (1971) have discussed present state-of -the-art
capabilities for inear and non-linear computer-a''-d statistical circuit design.
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Furthermore, Logan (1971) described the characterization and modeling of
colponents for tolerance analysis. and Karafin (1971) used tolerance analysis
for optimum design. More recently, Pinel and Roberts (1972) treated the
tolerance assignment problem for linear networks on a worst-case basis by
non-linear programming.

This paper uses the state-space approach, described for circuit analysis
and design by Pottle (1966) and Yarlagadda (1972), to develop a direct co-
variance algorithm for determining the effects resulting from random input
andjor component variations. Related roIt. by Irwin and Hung (1967),
Kuhnel and Sage (19(69), and Rowli-;d and Holmes (1971) have been used
for large-scale, non-linear system . in aerospace applications. These results
were based on earlier work in linear filtering theory by Kalman (1960). The
contributions of this paper are (1) the development and application of the
direct eo-ariance algorithm for linear and non-linear circuit analysis problems,
(2) the development of an accuracy prediction scheme for estimating in
advance the range of applicability in non-linear cases, and (3) numerical
comparisons showing the need for a very large number of Monte Carlo runs
for comparable accuracy.

2. The direct covariance ilgorithm
Consider a non-linear circuit whose dynamical response may be expressed

in state variable form as

=f(x, r(t). w(t), aE, t) (1)

where x is an n-dimensional vector representing the circuit state, r(t) is a
k vector of non-random inputs, w(t) is an i vector of random process circuit
inputs and/or parameters. and a is a j vector of random bias (i.e. random
variable), circrit inputs .nd/or parameters. As indicated, the n vector f is a
non-linear !unctional of those vector arguments shown in eqn. (1).

Let the mean values of w(t) and a he represented by 7, and -, respectively.
Observe that the distinctior between the random vectors w(t) and a is that
w(t) is a white noise random process while a is a random variable that is
constant in time. Let the covariance matrices of w(t) and a be defined by

S(2)
E{(-- %)(a-%)T }- Q. (2)

I i

where S(.) represents the delta function.
it is assumed that f in eqn. (1) is a sufficiently smooth functional of its

arguments such that its first partial derivatives with respect to x, w(t) and
a exist. Let f be expaned in a Taylor series about the noise-free solution
x,:(/) to yield from i,(in. (1) the linearized incremental equation given by

Sk = A (/)Sx + Bit)6w(t) + LV(t)t (3)

where the noise-free solution is the soiution of ecqn. (1) obtained by replacing
the noise vectors wy) ad a by their mean values, i.e.

. ,(1) = fx' .'(0, 0,, ,t (4)
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Morteover, the matrices A(t), B(t) and C() in eqn. (3) are used to represent
fin.t partial derivatives defined by

A5 (-) -

where the subscript N is used to denote that the partial derivatives are
evaluated at the nominal, or noise-free, condition. Finally, the incremental
variations in x, w(t) and tz about their nominal values are given by

Sx 4x(t) - x.()

6w) A w(t)- i,,(t) (6)

It is assumed that these incremental variations are sufficiently small sach
that second and higher-order Taylor series terms in eqn. (3) may be neglected.

The statistical analysis problem under consideration is to determine the
state covariance matrix P(U) which results from the presence of random
vectors w(t) and a in the dynamical eqn. (1) of the particular circuit. It is
.shown in the Appendix that P(t) satisfies the matrix differential equation
given by

(Pt) = A (t)P(t) + P(t)AT (t) + B(t)Q,(t)BT (t)

+ C(t)Q.HT(t) + H(t)Q.C'lr(f (7)

where

P(J) A E{Sx6x T}

11(t) 4 ) O(t, r)C(7) dir

and (1)(t, r) is the state transition matrix associated with Sx in eqn. (3).
The matrix equation in eqn. (7) is exact, for the linear, time-varying

incremental equation for x in eqn. (3). However, since second and higher-
order ternis in the Taylor series expansion of f have been neglected in arriving
at eqn. (3), the application of the direct covariance result in eqn. (7) must be
recognized as providing only an approximate analysis for the non-linear
dynamical circuit in eqn. (I). Particular examples described in the following
section demonstrate that the linearization assumption is justified for low-
noise, milly r -n-linear circuits.
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3. Numerical results
Two examples are presented here to illustrate the usefulness of the direct

covariance algorithm for circuit analysis as well as to indicate its limitations
in certain highly non-linear cates. Following a brief first example involving
a simple RL series circuit with It being treated as a random variable, com-
parisons with the Monte Carlo approach are made for a non-linear, second-
order, cascaded RC ladder circuit. The need for ensemble-averaging a very
large number of Monte Carlo simulation runs for comparable accuracy is
demonstrated, and the resulting advantages of the direct covariance approach
are clearly identified.

Example I
Let the resistance It in a simple RL series circuit be represented as a

random variable that is uniformly distributed on the range between r-RO
and q + R0, where iq1 is 10 ohms and Ro is allowed to assume several constant
values for purposes of comparison. Elementary considerations may be used
to show that the variance of R is related to the bounds on the probability
density function by QR= R0

2/3. Moreover, let the source be a d.c. voltage
of magnitude V, =100 volts applied for all t > 0, and let L be 100 millihenrys.

The voltage vi, across the resistor, initially zero, obeys the scalar dynamical
circuit equation given by

R1 R
'&U=  VR+ V. (9)

with a noise-free solution defined by

VR 1 (i) = Vj I - exp (7-I t/L)] (10)

The linearized incremental equation corresponding to eqn. (3) is

UV)v' V'( ISR (1L/

Even though the series RL circuit itself is linear, the appearance of the term
with R in eqn. (9) as a product with v, forces tho problem into a general
non-linear framework and requires the usual linearization assumption of
sufficiently small variations.

Inserting eqn. (10) into eqn. (11) and identifying the system coefficient
matrices in eqn. (3) yields the covariance matrix differential equation from
eqns. (7) and (8) as

P(t) - 2L P(t) + oxp (- 21j /L) (12)
L 3L2

%vnich has the closed-form solution (for P(0= 0) given by
Vj 2q

P0)= t'- cp (- 2 njL) (13)

,,~
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Using eqns. (9) and (10) with basic definitions from probability theory
provides the exact solution P,(I) for the variance of the voltage acro s the
resistor as

R 'In *l1. ex)= VL ~I -exp l RtlL,)- I V I - ex)p-tIL)]I
nu - I.t Ik

x dp2 dR

= VH2 exp (- 2,trilL) ['exp (2 Rot/L) -exp (- 2RotIL
4Rot/L

(exp (Rct/L) - exp (-RIL)) ]  1
-~~ 2R 0IIL (4

Comparison between this exact solution and the approximate result in eqn.
(13) from the direct covLriance approach are presented in fig. I for the given
conditions. These two solutions differ only slightly for rather wide ranges
of R. for this mildly non-linear application of the direct covariance algorithm.
Furthermore, the large magnitudes obtained in fig. 1 for the resistor voltage
variances indicate that close parameter tolerances can be quite important in
circuit design considerations.

Fig. I

Resistor 60 EJ\V - xact !
voltage (o4n
Variance
(Volta 2 )

40 Direct

Exact[
20 0

00 10l 20 30

Time (mace) .

Comparisons between the direct covariance algorithm and the exact solution Showing
the variance of the resistor voltage for Example 1.

4b
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Fig. 2
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Example 2
Consider the second-order non-linear circuit shown in fig. 2 and represented

dynamically by
1 1

' I - C- V, + 8 ,,(t)

~~= (15)II K KV
o-- R O vo+ 2 R I+-O __ lv lV

where RC= 1, R2A = 4, and the source v(t), applied for all t> 0, is a zero-
mean Gaussian white noise input with variance Q.. The operational amplifiers
are included for amplification, isolation, and summing. The initial voltage
on C, is zero, but v1(O), Q, and the constant scalar parameter y are allowed
to assume different values as Indicated below.

The purpose of this example is to present comparisons with Monte Carlo
simulation runs and to demonstrate the range of applicability of the direct

covariance algorithm for non-linear electronic circuit analysis. Figuro 3
shows curves of ensemble-averaged Monte Carlo runs performed on the digital
computer for the linear oase (y-0) with -1 and v(O) -0. The variance

Fig. 4

01.0.5I V11O) - 0

I f[S

w

0 .01 0.02 0.06 0.10 0.20

" (LOIOo SCALE) -

Variations in average per cent error in the output voltage variance versus y for the
direct covariance algorithm applied to Example 2.
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! Fig. 5
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~Digital simulation results for the direct covariance algorithm and tile Monte Carlo

technique as Q1, varies in Examiple 2.

of tile output voltage re(t), which is plotted as a function of time during tile
transient region of operation, exhibits errors of from 10 to 25% for 25 to
100 Monte Carlo runs. Comparisons with the exact. solution obtained by
using tile direct covariance algorithm reveals that. up1 to 1000 Monte Carlo

[=li , , runs are needed for approximately 2% accur'acy.

Variations in direct c'ovariane results as it function of tihe amount (y) of
circuit non-linearity are illustrated in fig. 4. For tile same timec period as in
fig. 3, but with Q,,,= 0.5 and vj(o)= 0, the average per cent error in tile output
voltage variance is plotted vcrstu: y. A similar result is shown in fig. 5 for f
variations in Q,,. with y=0.5) and vl(0 )= 0.10 . These computer simulation
runs demonstrate that the error in the direct covariance solution, when"
compared with 1000 Monte C arlo runs, increased as y anld Q,, increased and, .

~consequently, as the given electronic circuit became more non-linear. Both

k3

IC7



79

Covariance algorithm or computer aided electronic circuit

curves are uscd in the following section to estimate the accuracy expected
from the direct covariance algorithm by examining the non-lincar circuital
equations directly. Moreover, fig. 5 indicates not only that this approximate
algorithm might be unacceptable for highly non-linear circuits but also re-
emphasizes the earlier result that a very large number of Moiate Carlo runs are
required to obtain accurate results.

4. Accuracy prediction
It would be desirable to be able to predict in advance the accuracy of the

direct covariance algorithm for non-linear circuits. An exact prediction of
the expected accuracy is not possible because exact analytical solutions
cannot be found -. general, for the output variance of non-linear circuits.
However, the result from a large number of Monte Carlo runs may be regc Aed
as a reference solution for the purpose of accuracy prediction, but even then
(as shown in fig. 3) sone inaccuracy is present. The reason for using the
direct covariance technique is to avoid the time-consuming Monte Carlo
approach.

Suppose the Monte Carlo runs had been made for one particular design
condition (parameter setting) of a given electronic circuit. Using this
information, the following procedure couid be used to estimate the accuracy
of the direct covariance algorithm for sufficiently small changes in the para-
meter settings. As a particular example to illustrate the procedure, consider
the exact incremental equation associated with eqn. (15), i.e.

se S1 , 71,(t)1
K ~ 1 (16)k 8Vo +._ .. [lj1jV+ Kyv, V1

JA R?2C2 R2

Suppose that the non-linear term in eqn. (16) is required ,o be not greater
than k% of the corresponding linear terms, i.e.

k
IvSv121~-~ < j-28v0 +i +2yIv1I]N8 1 (7

where K.2 and RC,=i have been substituted into eqn. (17). Squaring
and taking expected values yields

( < T56 [4a,2+[ 1+2ylvj]x 2.a'2

+41+2ylvll]N IE(SvoSvj}I] (18)

Note that E[Sv,4) has been approximated by 3a,, which is exact in this
case because S't is Gaus.ian. Using the steady-state values of ne var-iance
terms )btained from the linear case (y = 0) yields

2 2 Q- 19
.2 , = ; rVo&V1} 2 6
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Sul,-itituting f.jI. miJJ into eqn. (IS) '.after Amplifications,

372Q.': k I I'" !+ 25']1 -2lrytt~ (201)

The equality in eqn. (20) is plotted in lig. (. which shows that as either y or
Q,, increases, the per eent k of the second incremental equation in eqn. (16)
caused by thi' non-linear term increases rapidly. Using the information in
fig. 6 together with figs. 4 and 5. the per cent error in the output variance as
a function of the parameter k may be plotted. The sketch for varying y and
Q, is shown in fi',. 7. If k is less than 3%, then the error in the output
variance is less than 5%. However. for k= 10%, the error in the output
variance is approximately 30%. If 7 and Q,,. are such that k is approxi-
mately 10%. then the direct covariance algorithm compares in accuracy to
approximately 25 Monte Carlo runs (30%, error). However, if k=3%, then
the accuracy of the direct covariance algorithm is better than 200 Monte
Carlo runs. Therefore. k may be computed in advance from the incremental
equations to determine the expected accuracy and the number of Monte
Carlo runs which would yield approximately the same accuracy as the direct
covariance algoritlim for the given non-linear circuit.

These observations on the accuracy of the direct, covariance algorithm as
a function of the quantity k are l)recisely correct (,,ly for the single example

Fio 6

A I k VERSUS T
FOR Ow  0 5,Vl(0) - 0

"I\ k VERSUS OW

5

I L/ LO 00,v-0

• 001 0.02 0.06 0.10 0.20

V" (LO0G. CALE)

r ,  0.10 0.40 1!0 ILO 5.0
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Plots of k versus y and Q,. for tie non.lincar ci cuit in eqn. (lb).

A' ., =
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Fig. 7
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Plots of per cent error for th direct covariance algorithmn versus k for the circuit
described by eqn. (15).

considered. However, it can be expected that other similar second-order
circuits with parameters sufficiently near those of the previous example
would yield results with corresponding accuracy. In particular, it should be
expected, as shown in fig. 7, that the average per cent error in output variance
would be on the order of threes time the value of k. Moreover, some useful
information would be obtained even if this error varied by as much as two to
four times k. However, variations of from 50 to 100 times k would be un-
expected.

,- Monte Carlo simulation experience is usually available on those eleetronic
circuits where noise disturbances have been ,I problem. Curves 3imilar to
thoee in fig. 7 can be plotted for the particular non-linear circuit being con-
sidered. As stated previously, these curves can be used to yield fpproxim,,o
estimates of the accuracy of the direct covariance algorithm in given situa-
tions

5. Software package d.elopment

A digital computer software package for implementing the direct co-
varianre algorithm for large-scale circuits and systems has been developed.
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Thle complIetedl package provides the capability for statistical analyses with
realistic engineering trade-offs betwecn accuracy, computational speed,
equipment requirements, and programme complexity for the user. The
importance of such at computer software package for electronic circuit analysie
is evident from its p:otential usage for parallel statistical analysis during
p~relimuina~ry design. Trhe evolutionary nature of this statistical information
tendls to milnmize the need for redesign during terminal stages of circuit
developnmcnt, which was discussed by Dawson d al. (1960).

A major considleration for the use of the direct covarian.Vce package in
circuit design i-, its inherent computational efficiency. WVhile comparable
accuracy from the Monte Carlo approach requires up to 1000n system Integra-
tions, %%here n is the ordler of the systemr or circuit being designed, the direct
covariance algorithm requires n(n + 1 )/2 suich system integrations. If n is
50, for example1, the (direct covariance algorithm operates approximately 40
times- fast than the Monte Carlo approach. On the other hand, for very large
circuit arrays of extremely high order, the relative economy betwveen the two
statistical analysis tools diminishes. However, as shown in a previous section,
we:rme cases of circuits involving high noise sources and/or very harsh non-
lincaritics should be handled by the traditional Monte Carlo method.

6. Conclusions
A direct covariance algorithm has been developed and applied to the

circuit analysis p~rob~lem for utilization as part of a gcner:al computer-aided
statistical analysis and( design capability. Tlhe advantages in both computa-
tional sp~eed1 and accuracy over the traditional MneCarlo technique have
beeni demonstrated for low-noise, mildly non-linear circuits. IIn addition, a
procedure for accuracy prediction has been (developed and applied to a typical
example. The incorpo~ration of this direct covariance algorithm into a digital
compluter software palckage has been described with p~articuilar emphasis on
its importance to Vice user its a circuit, analysis tool for preliminary statistical
desig~n.

Appendix
This Appendix p~resents the derivation of tho covariance miatrix differential

equatinn in eqn. (7) for the linear incremental equation In eqn. (3). Th!)
exact Rolution for 8x(l) may be oixpressed it, torms of itSi 8tate transltlo:
matrix M11, 10 at;

60~)= $(t, to)Sx(to) + J l)(t. r)1i(,r)Sw(r) dr + f $(t, r)V(r)8atdr (21)

Recognizing that bet through random, is constant inl time and Using the
(lefinitioi, of 11(t) fromt cqn. (8), one has

8X(t) (1(t, 1,)8X(10) + J(l)Q, 7) B(7r)SW() (It +1 J(1)60L
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Therefore,

P(t) = E{6x(t)6x'(t) }

= E LD(t, to)bx(t,) + 4 (t, -i)B(r)Sw(r) dr+It(t))6d ]
x 4(t, to)sx(to) + (f(t, 7)B(r)6w(r) dr + l(t)ka (23)

Performing the indicated multiplications in eqn. (23) and noting that 6x(t.),
Sw(t) and ka are uncorrelated yields the result

P(t) = 4D(t, to) E[8x(to)8XT(to)]IT(t, to)

+ ( j 1(t, r)B(7')E[6w(r)Fwr(p)]BT(p)DT(t, p) d" dp

+ H(t)E{&8taT}HT(t) (24)

Using eqn. (2) and the sifting property of the delta function, one obtains

P(t) = (I(t, 0)1)(to)rDT(t, to)

+ 0 ')(t, 7.)B(i')Q.(r)BT()(T(t, ') d"
I.

+ H(t)QjlT(t) (25)

Equation (25) provides the integral solution for P(t). However, by forming
P(t) from' eqn. (25) and using the relationship

P,)(t, r)
t = A(t)(l)(t, r) (26)

the direct covariance algorithm may be expressed in the more convenient
form of the matrix differential equation in eqn. (7).
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A SEQUENTIAL ALGORITHM FOR COVARIANCE MATRIX CALCULATIONS

James R. Rowland Willard M. Holmes
School of Electrical Engineering Guidance and Control Directorate (ANM.I-RN)
and Center for Systems Science Research, Development, Engineering and
Oklahoma State University Missile System Laboratory
Stillwater, Oklahoma 74074 U. S. Ary Missile Command

Redstone Arsenal, Alabama 35809

ABSTRACT a part of the forcing functions for connected sub-
s stem considered subsequently. The reason for

A useful sequential algorithm is developed for te lower required storage is that intermediate
handling state covariance matrix calculations in integration variables are dimensioned on a lower-
large-scale stochastic filtering and analysis pro- order subsystem basis and re-used from subsystem
blems. A signiflcant reduction in computer stor- to subsystem. Moreover, some subsystems have
age is obtained by segmenting large-scale systems inputs from only a few other subsystems, which
and operating sequentially on the various subsys- further simplifies the sequential computations.
tems. This saving in computer storage is due to On the other hand, integrating the system covari-
a procedure of dimensioning intermediate integra- ance matrix differential equation in its original
tion variaoles on a lower-order subsystem basis form requires much larger dimension statements for
and re-using them from subsystem to subsystem. the intermediate variables. The reduction ith core
Error considerations and the amount of core reduct- stgege is a function of the number, order, and
ion achieved are discussed, and an example is arrangement of subsystem, including the various
presented to illustrate the sequential ordering of interconnections of feedforward and feedback loops.
the covariance matrix calculations. The cost of obtaining the reduction in core

storage requirements is reflected in the !treased
1. INTRODUCTION complexity involved in the ordering of calculations

for the sequential algorithm. For those applica-
It is important to be able to perform computa- tions whera less computational accuracy is accept-

tions sequentially for large-scale systems to able, additional savings in computer storage and/
avoid excessive digital computer storage require- or computational speed can be realized. An example
ments. For example, such considerations are is presented to illustrate the sequential algorithm
especially critical in large-scale air defense itself as well as the interesting tradeoffs
missile system simulations where a variety of possible in its implementation for large-scale
operations must be handled simultaneously [I 2). systems.
Some of these systems are so large that is is
simply not possible to implement the desired stoch. 2. THE SEQUENTIAL ALGORITHM
astic filtering or analysis algorithm directly on
a given computing facility. In such cases, an Consider a linear, time-varying system described
approximate method must be used. by the vector differential equation

The sequential algorithm developed in this
paper is based on the multilevel systems concept i - A(tj + B(t)(1)
proposed by Mesarovic [31 who partitioned complex
systems into simpler subsystems to form a hierarchy where x is the n-vector of system states, w is an
of system models for analysis and design purposes. t-vectOr representing white noise inputs, and A(t)
In [4) Lefkowitz described how the multilevel hier- and 8(t) are time-varying system matrices. As
archy approach had been used to solve particular shown in [6-12], the stato covariance matrix P(t),
industrial problems. Moreover, Noton [5 applied defined by P(t) I E(j(t)j1(t)), satisfies the mm-
multilevel systems theory to derive a coordination trix differential equation
algorithm for a number of subsystem Kalman estima- T T Titots. A - AP + pTAT + BQBT  ())

In the present work, the overall system is
segmented into stveral subsystems interconnected where the functional dependence on time t is im-
by feedforward arJ feedback paths. The analysis plied throughout. The input covariance matrix Q
problem considered is the evaluation of the state is defined by the relationship
covariance matrix at discrete points in time from
its matrix differential equation. Using the sub- E(w(t)w_()} * Qft)6(t-el (3)
system concert, one may partition the coefficient
matrices, the input covariance matrix, and the Let a large-scale system described by (1) be
state covariance matrix to permit simplified segmented into several subsystems as shown in.Fig-
sequential calculations. Differential equations ure 1. In the subsystem context, the matrices A,
for these partitioned segments are written to re- B, P. and Q may be partitioned as
flect self-interacting, feedforward, feedback, and All.. B Binput terms. The numerical integration of these A .... 1 l

subsystem covariance matrix differential equations~~~~is performed sequentially on the digital computer A - N B
with a worthwhile savings in computer storage. . (B:
Results from a given subsystem calulation become kA I A NN/ B 1 NN

SWIEEECO Record of Technical Papers, Dallas, Texas, April 19-21, 1972, pp. 135-138.
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85iPi11 i0 IN II Q the thirdndsixth tem in(6).Theserepresent
1 I (l feedback paths. The seventh, or last, term reore-

Q - ) sents input noise data. Rewriting (6) and sumwa-
rizing these observations, one has

1 PN 1 (4) +t pi
IN N1 . ON P j . A11 1 i PIj A ii

iSelf-Interaction

SS Z AikPkj + PikAjk~k-l

Feed-Forward Paths (7)

FIK + A P + ?P AT
Z ik kj ; 1k jk
k 1+3 k=j+l

Feeiback Paths

Figure 1. Schematic Diagram of a Large-Scale + Bi iT
System Showing Individual Subsystem Connections. BiQii o6ij

To simplify the development which follows, it Noisy Inputs
is assumed that noise inputs are uncorrelated with
each other and, furthermore, that each enters only What is desired is to apply (7) sequentially to
a single designated subsystem as shown in Figure 1. determine PIj for all i and all J. It is partle-
This assumption means that both B and Q are ular', important only to know Pj1 , but it nay be
diagonal matrices, shown that calculation for all i and j is neces-

Since the matrix P is symmetric, i.e. P = P, sary to completely determine Pii.
one has P = PT Therefore, (2) may be express- A flow chart showing details of the sequential
ed as algorithm for covariance matrix calculations is

given in Figure 2. Numerical results obtained by
P Ail P I Ai2p ' A P using a computer software package developed from
i lj. 2j T j Fiqure 2 are provided in a later section of this

+ P AT +T T + PT AT
+ i jl 2i j2 Ni jN paper.

+ B T.6i (5)+ iiQii 1i i,

where 6ij is zero if i $ j and unity if i = j.
Equation (5) nay be conveniently grouped as

+- A APi + A ' A +PN j-1 DO 2 1.1,

AikPkj + P kiA jk +  ii A ii
k=i+l Identify Coefficients and
N Inputs for the (I,J)

+ j AT + BiiQiiTiiij (6) Subystem Calculation

kzj~l ik + i I
Subsystem Covariance

for i = I .... N and j = 1,...,N. Integration and Storage

The 1at'rces PK1 and P~i in the second line of (6) AdvanceTime
may be replaced by Pik and Pij, respectively,
since P is syrmetric. The second and fifth terms
in (6) are the only ones involving Pij. Moreover, End
the first and fourth terms have as coefficient 3
matrices entries from the lower left of the main
diagonal of the system matrix A. These terms re-
eresent feedforward paths. Elements from the Figure 2. A Flow Chart of the
u:per right of the main diagonal of A appear in Sequential Algorithm.
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3. ERROR CONSIDERATIONS ror the ith row, the previous value of PjN is need-

ed. For example, to calculate P44 one may write
The use of sequential calculations makes avail- T T

able current values of subsystem cova:iance ma- 44 = A44P44 + P44A44 + A43P34 
+ P34A43

trices only for feedforward terms in suavequent T
equations. Previous values must be used is approx- 4 B44Q44B44
imations in feedback terms, which is equivalent to T T
having samplers and zero-order hold devices in P34 = A33P34 + P34A44 + A32P24 + P33A43
certain feedback loops in covariance matrix calcu- T T
lations. P24 

= A22P24 + P24A44 + A21P14 + P23A43
To illustrate the nature of these approximations T

consider the system of Figure 3, which has a single 014 = A11 P14 + P14A4 + P13A43 + A15P45  (8)
feedback loop around N cascaded subsystems. Many
of the elements of the A matrix are zero for this In interpreting (8), one should note that the four
given system structure. In fact, except for the matrix equations must be applied sequentially in
element AIN, which is due to the single feedback reverse order, beginning with the last. The
loop, only the main diagonal elements and those matrices P13 , P23 , and P33 are known from calcula-
imnedlately below and adjacent to the main diagonal tions for the previous subsystem, i.e. subsystem
are non-zero. Figure 4 shows a block diagram for 13. Observe that the last equation in (8) has the
the state covariance matrix elments and indicates term A15P45, which is obtained from computations
that the single feedback loop in Figure 3 intro- at the previous time interval and used as an approx-
duces a feedback loop for every row of the covari- imation for the current interval.
ance matrix. Let N=5 for a particular system. This section has shown the kind of approximation

needed for applying the sequential algorithm. The
next section describes the reduction in computer
storage for the algorithm.

E2 ...i ss*I 4. REDUCTION IN COMPUTER STORAGE

There is a certain amount ot digital computer
core required for simply storing the matrices A, B,
Q, and P. With some important exceptions, these
matrices are needed reyardless of the method being
used to solve the matrix differential equation (2).
Of major concern here is the comparison of addi-
tional dimensioned core locations required by the
sequential algorithm and by the direct evaluation
of (2) using standard numerical integration form-
ulas.

Consider the case of m cascaded subsystems with
each of order r. Euler's Method would require
(mr)2 additional locations, i.e. for the P matrix,

Figure 3. A Simple Feedback System. by direct evaluation. However, only 2 m2 + 2 r2

additional locations are needed for the sequential
all, algorithm. If m is large and also much greater

than r, then the savings in core can be significant.
PMoreover, the additional core for RK2, i.e. the

standard second-order Runge-Kutta formula, is
3(mr)z by direct evaluation and 2 m? + 4 r2 by the
sequential algorithm. Corresponding cop require-
ments for RK4 are 3(mr)2 and 3 m + 4 r , respect-

ah ively. Figure 5 shows plots of p versus m, where
P Is the ratio of additional core required by

S direct evaluation to the additional core required
by the sequential algorithm. These curves should
be viewed as rough estimates, rather than exict

, _ratios, since use of symmetry conditions and other
more efficient programming techniques would alter
these curves somewhat. It should be pointed out
that if a large amount of core is required for the
system matrices and for program operations, then a
dramatic per cent reduction in the additional core
required by the sequentiel algorithm may be de-
emphasized when considered on the basis of total
core requirements.

Figure 4. Interrelationships for Elements of
the Partitioned State Covariance Matrix
for the System of Figure 3.
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OPTIMAL DIGITAL SIMULATIONS FOR RANDOM
LINEAR SYSTEMS WITH
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Abstract-A generalized approach involving concepts from optimization theory is developed for
realizing optimal digital simulations for linear. timc-arying. continuous dynamical systems having
random inputs by modifying discrete input signal variances. The minimization of a cost functional
tised on the state covariance matrices of the continuous system and its discrete model leads to a
*.wo-point boundary value problem which can be solved by known numerical techniques. The
result is a systematic procedure for determining optimal digital simulations tinder the constraints
that the numerical integration formula and integration btep size have been specified in advance.
An example is presented to illustrate the procedure, including a verification using Monte Carlo
simulation runs.

INTRODUCTION

Increased digital and hybrid computer capabilities in recent years have resulted in an
even stronger reliance on the Monte Carlo approach for statistical analyses of large-scale
dynamical systems(l, 2]. Improved digital random number generators[3, 4] have already
been developed for producing more precise statistical inputs. Emphasis has also been
placed on developing more accurate[5], as well as more eficient[6, 7], numerical algorithms
for digitally integrating large systems of continuous differential equations. Moreover, the
rapidly expanding field of digital signal processing has only recently opened up several
new possibilities for handling continuous systems efficiently via digital representations
[8-10]. Many of the previous works, e.g. (8] and (I il, are based on matching the frequency
spectra of continuous systems and discretized models. Although more extensive time-
domain techniques have been reported in the literature[12]. only the simple rectangular.
or Euler, approximation is in common use for discretizing continuous systems(13-16].

This paper utilizes concepts from optimization theory to derive a time-domain solution
to the problem of determining optimal digital representations for random linear con-
tinuous systems having integration constraints. The stochastic formulation reduces to a
deterministic two-point boundary value problem in the calculus of variations, which can
be solved by known techniques. Such integration constraints can occur, for example,
when large-scale systems are being simulated on medium-sized hybrid facilities(17]. If the
analog equipment is seriously limited, then a few of the integrations must be performed
digitally. In these cases, the integration method and corresponding step size are often
constrained quite severely. The purpose of this paper is to present a systematic procedure
for modifying the digital simulation input signals to yield optimal results.

Ill
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PROBLEM FORMULATION

Consider a continuous, linear, time-varying system described by

i() = A()x() + l(I)w, () (I)

where x(t) is an n-vector representing the system state, w,(t) is an Pi-vector of white noise
input disturbances, and At) and Btt) are n by n and in by in system matrices, respectively.
The white noise input w,) has a mean of zero and a covariance matrix Q,{t) defined by

EQw,(tw ,(O - z) (2)
where 6,(.) is the Dirac delta function. Let a discrete model of the continuous system (I)
have the form

y(tL+ 1) = 0At+ I, tk)y('.) + lldQt + I, t&)wt() (3)

%therc y(tj is an n-vector representing the model state at time t. = kT, wtk) is an rn-vector
input sequence of random numbers, and 0d and If,, are n by a and i by ni time-varying model
matrices, respectively. The zero-mean model input. wjtk) has a covariance matrix QAtk)
given by

SQ,(tQ ) fork = j
E,' ~ jO to fork #j. (4)

The cost functional is
K-I

J[Qd(t)] = Trace 3" [M(k+,) - "'[Pk + 1)]rR[it ( ,) - P(rk+ 1)) (5)
L0

where R is some positive semidefinite n by a matrix and P,(t) and Pd(tk) are defined by

P,(t) 4- E{x(t)xT(t)} (6)

Pd(tk) 4, E{y(tk)y T (tk)}. (7)
The problem is to determine Q(t) such that the cost functional J in (5) is minimized for

specified model matrices 4d and H8 in (3) corresponding to a given numerical integration
formula and integration step si/e T.

DEVELOPMENT OF OPTIMAL DIGITAL SIMULATIONS

The approach to be utilized here is to determine the matrix difference equation for
Pd(t, .) in terms of Pd(tk) and the input covariance matrix Qd(tk). Thereafter, the cost
functional in (5) may bc minimized with respect to Q(tk) by invoking known results from
optimization theory.

Using the model difference equation (3) in the definition (7) yields

Pd(tk, 1) = Efy(tk+ I)Y"(tk+ 1)}

= E{Ddy(tk) + HdWd(tk)] ['dY(tk) + HdWd(tk))}

Pd(ti+ t) = 'dd(tk + , tk)Pd(tk)ID{t(l+ t, t,) + H (tk+ , t&)Q (fk)Hj(rk+ ,, tk). (8)

Therefore, the optimal digital simulation problem originally stated has been reduced to a
two-point boundary value problem in the calculus of variations. It is required to minimize
the cost functional (5) subject to the matrix difference equation constraint given by (8).
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Before proceeding with this optimization solution, it is instructive for comparison
purposes to determine the corresponding diflerence equation for 1AI& t1) The exact ex-
pression for P,(t) may be obtained, as shown in [13]. by solving for x(t) from (1) and sub-
stituting the result into the defining equation (6), i.e.

,(t= E{[(.)x1(t) +
=E{[, ,,t,)X(to) +f oj,(. )(iOw,(z

[DN(. 1to)x(1) + foi,( B(w,(i)dt. (9)

Performing the indicated multiplications in (9) and noting that x(to) and w(t) are un-
correlated, one has

P0) = 0,(t, to)E{x(to)xT(to)lOVc(t, to)

+ 1J,(t, z)B( )E{w,(i)w,(p)}Br(p)0r t, p)dzdp. (10)
toga

Using (2) and the sifting property of the delta function gives, for t tk+ I and to = ik, the
recursive relationship

lC(ti+ 1) = ID(tr+ 1, 1LPl1(k)P (tk+ I, tk)

+ (DI(hk+ 1, t)B()QCt)BT(i)(Y(1k+ 1, z)dz. (1 )

The matrix equation in (11) is not a constraint equation for the posed optimizatic. - rob-
lem because 1)(t,+ 1) is not a function of the optimization variables contained in the matrix
QI(tk). On the contrary, P(iA, 1) is simply treated in (5) as some known time-varying matrix
which is to be modeled by P(tk+ 1).

It is known from the calculus of variations in optimization theory that the solution to
the posed problem requires the introduction of an n by n matrix A(1k) of Lagrange multi-
pliers for Pd(i). Moreover, Aj(L) satisfies a matrix adjoint difference equation which has
the boundary condition

)Jtt = 0 (12)

where zt, is that terminal time indicated in (5). A convenient method for obtaining the
adjoint equation is to define the Hamiltonian If as

H = Trace{([P(tk+, ) - P (tk+ 1)]TR[P,(,+ 1) - P (tk +)] + Pd(tk , t)}. (13)

It has been shown[13) that the matrix adjoint equation is
all

2.d((A) -2 -. (14)

Equation (8) must be substituted into (13) before the indicated partial differentiation in
(14) is performed. Finally, the optimal value of Qd(h) satisfies

.... = o0 (5)Q,tt)
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The resulting two-point boundary problem for determining the optimal digital simulation
involves solving simultaneously the equations in (8). (14) and (15) with the boundary con-
ditions in (12) for A,,(t) and known initial conditions for P(th), i.e. Pdto) =-Pdo.

It should be observed that a degenerate case of the optimization problem occurs when
the number (m) of random inputs is at least as large as the number (n) of system states,
i.e. m ; n. In such a case, the cost functional in (5) becomes zero. If, in addition, the model
is permitted to utilize the state transition matrix (STM) method of integration[7], then
Q.1t&) becomes Q,(tk)IT, as shown in Ref. 18.

OPTIMAL NUMERICAL RESULTS

As a particular example for purposes of numerical comparisons, consider the second-
order system given by

-i2 
= -2x, - 3x2 + w,(1) (16)

where x,(0) - x2(0 - 0 and w,(t) is a zero-mean white noise process with Q, E 1. Let the
discrete model matrices 0o(th+ 1, tk) and Ho(t +1, t) in (3) be considered for two separate
cases corresponding to the use of the Euler and second-order Runge-Kutta (RK2) inte-
gration formulas on (16). Since (16) is a linear time-invariant system, Od and Ho are functions
only of the integration step size T, where T = tk+I - t4. For Euler's formula, these
matrices are

0 OT l(i'~ 012(T)) I TOJT) = 0J (T) 022(T) -2T I - 3T(

.l(Tb Ihl(T)I 1
HAT)T=

and for the RK2 formula I I- T T- I'5T1 I

T)= -2T+ 3T2  I - 3T + 3.5Ta,

0 2 (18)
H(T) = 

0
-

5 T 1
- 15T2]

Let the cost functional J in (5) be defined by

= I { It(t +1) - PdII(th+ )) + [P,22(tk+ ) - Pd 22(44-l)1a} (19)

where K is selected in various parts of this problem such that the product KT is approx-

imately 5 sec.
The component equations for P corresponding to (8) are

Pd II (t,+ 1) 1Pl l) + 20, 1 12Pd 12() + 1i2Pd22(tk) + h2Qd(tk)

Pdl2(tk+) 01021P110(k) + (6110 22 + 01202)PdI12(tk)

+ 0'120b22Pd22(tk) + h1 2Qd(tk) (20)

Pd22(tk+ ) -- 21pd1 i) + 2 2 1022Pd120k) + (22Pd22(tk) + h2Qd(tA)S
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with each having zero initial conditions. The Hamiltonian in (13) is
S= y,2 + Y22]2 + ([z,pa(t,) + 20,1012P,2(tk)

+ *I242PJ22(t) + j tk)];. l (tj . ) + [02P,'1(t) + 122 ,0 2 01)

+ 22Pd,2(tk) + h2Q(t&)A 22(tk) (21)

where Y, and Y22 are defined as

- p11t~+) ~~p~ 1Q1 -24k, 112P412(td - 0*12P.122(tk) - h'QtJ ( 22)
= p~~2 2(t~+ 0) - 1z(1k) 2 02122pj,2zta) - 0 -2QPd). (22

Moreover, the component equations for the adjoint matrix Ad in (14) are

;.t,( &)- t3H - -0 1(Y,I] -'0[Y2 ] + #0z.2ds(tk+,)

+ 0I2021A,12(tk+ t) + 44 1 . 2 2(tk+1)

aH

Adl2tk)-201 ,012[Y11J - 20~21022IY221 + 20,101uiAJII(tk+1)k) (23)
+ (011022 + 0 12 2 1)Ad2(tk+ 1) + 202t022Ad22(tk+ 1)

420 422(tk) 0 -4 12 1Y11] - ip 2[Y22] + *,11dltk+,)

+ 01 24Ia2 Adt2at&+l) + '222tl-

The sta.ndard formulation for the two-point boundary value problem requires the in.
version of the three equations in (23) to yield A.(t&+ j) in terms of Ad(t) and Pjt). Using
(15) then gives Qd(tk) as a function of .(r,+j) and P(tk), which can further be written in
terms of Pd and Ad at time t4, However, the split boundary conditions at to and t mkes
an approximate iterative solution, such as the gradient technique, highly desirable.

One version of the gradient techniquefl 3) utilizes the equations in (20) and (23) directly
without inverting (23) or solving (15) for Q(tk). Letting Qt) - Q,/T for the first iteration,
the Pa component equations in (20) were solved forward in time. Thereafter, (23) was
solved backwards in time using the boundary conditions in (12). The value of Qj) for the
next iteration was obtain-d by adding to the previous value the term -*[0H/1,0Qt),
which had been evaluated for the Pd and Aj of the last iteration. For this example, a pro-
oortionality constant ac of 200 to 500 resulted in the convergence of this repetitive process
in ten iterations or less for most of the cases considered. The average optimal values of
Q, obtained by this gradient procedure are presented in Table 1, since the optimal Q,,,)

Table I. Optimaldiscrete model input variances Q, for several cans

Numerical Step size Number of steps Average optimal
integration formula (T) (K) Qi(&)

Euler 0.1 50 8.1
Euler 0.2 25 3,3
RK2 0.2 25 5.6
RK2 0.3 17 4.3
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for these cases were within 10 per cent of these averages for all L. Observe that the optimal
Qj for these constrained discrete model cases varied considerably from the unconstrained
model solutions (Qj Q=iT). For example. tile average optimal Qj for Euler's method
with T = 0.1 was 8.1. while Qj fr the unconstrained problem was 10. Figure I shows the
cost functional J for the tabulated cases as a function of t,. These curves verify the expected
result that a larger J is obtained when tie discrete model utilizes a less accurate integration
formula and a larger step size.

Variances for both x, and x, arc plotted as functions of time in Fig. 2 for Euler's method
with T = 0.!. Nonoptimal solutions obtained by arbitrarily selecting Q4 = Q'/T= 10
show good apreement between pat| and pI, but extremely poor results for representing
P,22 by PJ22. On the other hand, corresponding curves obtained by using the optimal
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Fig. I. Plots of J vs time,
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Fig. 2. A comparison of optimal and nonoptimal solutions for Eutcr's method with T =0.1.
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values of Q,) distribute the error more evenly between the two main diagonal components
of P, which is necessary to minimize the cost functional in (19). Monte Carlo simulation
runs were ensemble-averaged on the digital computer to verify these optimization results.Figure 3 shows that 100 Monte Carlo runs were insufficient for both the constrained
discrete model using Euler's method with T = 0.1 and the unconstrained problem using
a more accurate'integration formula and smaller step size. For this example, Monte Carlo
runs for the unconstrained problem utilized RK2 with T - 0.05, which yielded a negligibly
small cost functional (J a 0) in the gradient optimization procedure. Following theguidelines specified In Refs. 19 and 20, it was found that 1000 Monte Carlo runs gaveresults which agreed quite well with the variances determined In Fig. 2.

EXTENSIONS

The optimal digital simulation techniques developed In this paper for specified ),# and
Hj canusaily te extended to permit t..je discrete model matrices to have free optimization
parameters. The resulting formulation would require the optimal selection of both the
discrete input covarianc matrix Q,(tk) and certain discrete model parameters In O, and
Hd. This additional flexibility in the optimization procedure would result in a reductionin the cost functional by an amount depending upon precisely how these model parameters
affect the dynamical system response. A special case of this formulation has been con-
sidered in (I8].

The extension of these optimization results to mildly nonlinear systems can be achieved
by utilizing linearized variational equations about a nominal solution. As shown i [20],
the application of the error propagation algorithm in equation (11) for an approximate
analysis of low-noise, mildly nonlinear systems has yielded acceptable results. Further
digital simulation improvements might be realized by simultaneously optimizing the
nominal solution and the discrete linearized variational model[21]. Finally, it appears that
the concepts developed here for optimal digital simulations might also be extended for !
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Fig. 3. Monte Carlo simulation results.
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the optimal discrete implementation of stochastic filtering algorithms in continuous
dynamical systems[22].

CONCLUSIONS
Known optimization techniques have bepn applied to obtain optimal digital simu-

lations for random linear systems having integration constraints. The developed pro-
cedure depends upon optimally selecting the input covariance matrix QU0k) for prespecified
discrete model matrices corresponding to fixed numerical integration formulas with a
given step size. An example including Monte Carlo simulation runs has been presented to
demonstrate the improvements over arbitrary nonoptimal solutions.
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Abstract

Direct methods for handling noise propagation problems in large-
scale nonlinear systems are examined from the viewpoint of computability
and efficiency. Comparisons are made between a fixed configuration
method, the covariance analysis describing function technique, and the
variational covariance algorithm. Initially, the different techniques
are described with a particular emphasis on their advantages and dis-
advantages for large-scale nonlinear systems. Thereafter, a combination
of the techniques is applied to a thirty-third order air defense missile
system. The Monte Carlo simulation technique is then used to establish
the validity of the numerical results for the combined direct algorithm.

Introduction

Early work on noise propagation in dynamical systems focused on
the use of the Monte Carlo technique in which large numbers of simulation
runs were ensemble-averaged to obtain statistical results. Since these
Monte Carlo runs were often performed on the digital computer because
of accuracy considerations, the basic probiems were (1) the digital
generation of a sequence of pseudo-random numbers to serve as a random
input to the given system, (2) the sampling problem inherent in represen-
ting continuous systems and signals digitally, and (3) the determination
of the number of simulation runs needed for acceptable statistical accuracy.
Chambers [1] developed mixed congruential and multiplicative recurrence
formulas for generating pseudo-random numbers on the digital computer.
The optimal discrete representation of continuous input signals has
been considered in [2]. It i , shown in [3] and [4] that at least 1,000
simulation runs are required for statistical accuracies on the order of
two per cent in certain applications. A more modern approach to the
noise propagation problem is based on computing the desired statistical
information directly. The new approach has resulted in several direct
algorithms which are particularly amenable to digital computation based
on accuracy, computational speed, computer storage, and algorithm complexity.

This paper presents a state-of-the-art survey of direct noise propaga-

Proceedings of the Seventeenth Midwest Symposium on Circuit Theory,

Lawrence, Kansas, May 23-24, 1974.
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tion techniques for large-scale nonlinear systems. Comparisons are madebetween a fixed configuration method, the covariance analysis describing
function aigorithm, and the variational covariance algorithm. After
examining the relative merits of the three direct methods, a combined
algorithm is applied to provide useful results for a thirty-third
order system.

System Description

Consider a nonlinear dynamical system described by

x f(x, u(t),(t)t), , t) (1)

where x is the n-dimensional state vector, u(t) is an r-vector of non-
random inputs, w(t) is an m-vector of random processes, 1. is an t-vector
of random bias inputs, and t is L-re independent variable representing
time.

The input noise vec'.ors w(t) and 8 have mean values specified by
1w and n and covariances matrices Qw(t) and QV respectively. These

_ w
may be defined mathematically as

E{w(t)} - nw(t)

E8 )(2)
E {(K(t) 1- w(t))(w(,r ) -nw(,r)] T }  Qw t) 6(t-T)

E {( - ri)(13- ri)T} AQ

wherE.: 6() represents the impulse function.

The problem is to utilize direct noise propagation techniques to
obtain statistical information about the system state.

The Fixed Configuration Method

The fixed configuration method developed by Zirkle and Clark [5]
is an extension of deterministic variational methods to stochastic systems.Described as a variational-averaging technique, this method requires
that an initial assumed solution be an explicit function of time with
parameters being random variables. The selection should be made such
that statistical properties of the assumed solution are approximately
the same as the statistical properties of the system response.

Zirkle and Clark assumed a solution of the form
I g(t) = R(R,t) (3)

where R is a j by k matrix of random variables used in approximating
the system response. Their criterion for selecting R was

[f (x,u(t) ,w(t)6,j,t) " 6R dt : 0 (4)
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for j 1, ... , n and k = I, ... , m, where t I and t 2 indicate the specific

time interval of interest. As an example, Zirkle and Clark considered
+EL x + Ex3 = F(t) with an assumed form in (3) of R(t) = R cos wt.

The i put F(t) was a zero-mean, unity-variance, Gaussian, periodically
stationary random process. Equation (4) becameS(i+l)T 2_23 3

2 - 2 )R cos wt + eR3 cos3wt - F(t)]6R coswt dt = 0

(5)

where T = 27r/w. The resulting algebraic equation was

3 + 2_ 2
T eR 3 + (wo w ) R = C (6)

where C is the average of F(t) cos wt o,;er the period of interest T.
Therefore, the probability density function of C and the nonlinear trans-
formation in (6) could be used to determine the probability density function
of R and, hence, the desired result in (3). Zirkle and Clark reported
an error of less than 9% in the mean-squared value of the response am-
plitude for wo = 1, w = 0.6, and e = 1/16.

The main disadvantage is the problem of choosing the form of the
assumed solution, which may be overcome for a particular application
by a preliminary knowledge of the physical system behavior [6]. More-
over,it is quite difficult to implement this algorithm for large-scale
systems on the digital computer. The primary advantage is that the
complete state probability density function is available from the procedure.

The Describing Function Method

Another direct method for noise propagation is the covariance analysis
describing function technique, which utilizes a statistical linearization
of a given nonlinearity subject to pre-specified (usually Gaussian) input
waveforms [7,8]. The result yields a quasilinear approximation of the
transfer function of the nonlinearity, which is then used in the well-
known covariance propagation equation for linear systems.

The differential equations for the mean 2N(t) and covariance matrix

of P(t) of the quasilinear system state are

= (4,P) 4 + nw
T (7)

= AP + PAT + Qw

where N (xP) and A are matrix describing functions for the mean and

random signals. These matrices are defined as

N (4,P) 4 = E{f(x,t)}

(8)
A = E{f(x,t) 6xT } -
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where it has been assumed that the state x is the sm of its deterministic
mean and a random part 6x. The formulation in (7) treats the system

x = f(x,t) + w(t) (9)

rather than the more general system in (1).

The advantage is that nonlinear effects are utilized in a linearized
framework for a fast and efficient calculation of the covariance matrix
associated with the system variables. The main disadvantage is that
large-signal linearization techniques are applied to average statistical
information about the nonlinearity. The describing function utilizes
the nonlinear elements directly to yield noise propagation results, whereas
the fixed configuration mathod requires an assumed form of the system
response over a given time period. A third approach based on linearized
incremental variations about nominal operating conditions Is examined
in the following section.

Variational Covariance Algorithm

The third method to be considered is the variational covariance
3 algorithm which uses sufficiently small variations about the noise-free
I solution. The coefficients of the linearization matrices are updated
I during each integration interval whien applied to large-scale nonlinear

systems. This technique was applied by Kuhnel and Sage [9] for sensitivity
equations about a nominal flight path due to trajectory initial condition
dispersions and random system variations. The direct and adjoint methods
were used by Irwin and Hung [10] for evaluating the state covariance
algorithm for large-scale, nonlinear dynamical systems.

It is assumed that the input noise disturbances cause sufficiently
small deviations 6x(t) about the (noise-free) nominal solution x(t)
to permit linearization. Expanding (1) in a Taylor series about
AN(t) and neglecting higher-order terms above the first yields

§_x(t) = A(t)6x(t) + B(t)Lw(t) + C(t)_ (10)

where 6w and 60 are deviations from their respective means, and A(t),
Bt), Tid C(t"-are defined as the first partial derivatives of f(.)
with respect to x, w, and 8 , respectively. These derivatives are evaluated
at the nominal conditions Tn each case. The resulting variational
covariance algorithm is given by

Pit) A(t)P(t) + P(t)AT(t) + B(t)Q (t)8T(t)

+ C(t) Q HT(t) + H(t)QCT(t) (11)

where P(t) is the state covariance matrix and H(t) is the integral of
the weighting pattern associated with C(t).

Rowland and Holmes (4] showed that the variational covariance algorithm
can be applied to mildly nonlinear systems with acceptable results by
using linearized incremental equations about the noise-free solution. This

.1 L-1



100

basic algorithm tends to yield unsatisfactory results for highly non-
linear systems, but the technique may be combined with the other methods
described in this paper for acceptable results.

A Combined Direct Algorithm

The ariational covariance algorithm has been combined with the
describing function approach to yield improved noise propagation results
for large-scaile systems. Such a technique is useful for handling state-
dependent switching nonlinearities. The input density function to the
nonlinearity is assumed to be Gaussian, and the output density is determined
by known nonlinear transformation methods. The variance of the output
signal may then be calculated directly from the resulting non-Gaussian
density function.

A thirty-third order six degree-of-freedom air defense missile system
has been investigated [l]. The system includes a fifteenth-order auto-
pilot, twelfth-order airframe equations with missile rotational and trans-
lational variables and launcher dynamics, fourth-order actuators, and
a second-order seeker. Only certain segments of the missile flight could
be handled by the combined algorithm because of severe nonlinearities.
During this part of the flight, two relay nonlinearities in the seeker
prohibited the variational covariance algorithm from giving acceptable
results. However, the combined direct algorithm yielded results which
compared favorably with twenty-five Monte Carlo ensemble-averaged runs.
The seeker relay nonlinearity outputs were discrete levels, and the output
variance was easily computed for the given operating conditions along
the flight path. Finally, it should be noted that the combined direct
algorithm gave unacceptable results for certain parts of the flight because
the severe nonlinearities occurring in several of the missile sybsystems
were not processed by using the describing function concepts.

Conclusions

Three direct noise propagation techniques have been examined, and a
combined direct algorithm has been developed for large-scale applications.
The fixed configuration method was shown to be difficult to implementC for
large-scale systems because of the requirement of an assumed form of
the solution. The describing function method employed a statistical
linearization of system nonlinearities with Gaussian input waveforms. Its
application to large-scale systems requires a catalog of describing functions
for the particular nonlinearities present in a given system. The varia-
tional covariance algorithm utilizes linearized variatiuns about nominal
operating conditions to yield acceptable results for mildly nonlinear
systems. Moreover, the variational algorithm is easily extendable for
stochastic filtering applications where the system state is to be estimated
from a noise-corrupted measurement.

The combined direct algorithm was applied to a thirty-third order air
defense missile system. Certain harsh nonlinearities were handled by
the describing function approach and the other milder nonlinearities
by the small-signal, incremental linearization approach. These numerical
results compared favorably with the Monte Carlo simulation results
obtained for the same large-scale system.

;(
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Abstract

A direct stochastic sensitivity analysis algorithm is developed for
linear dynamical systems having incompletely known input statistics. The
new algorithm extends previous results by applying covariance propagation
concepts which utilize as a forcing function the sensitivity covariance
matrix associated with the uncertainty in the elements of the system
input covariance matrix itself. The developed algorithm is evaluated in
the context of a generalized sensitivity analysis formulation involving
nonlinear transfo;mations on the input signals. Numerical results are
provided to demonstrate the usefulness of the new algorithm.

INTRODUCTION

Noise disturbances are inherent in all large-scale dynamical systems,

typically appearing as a portion of the input signal, measurements, and/or

variations in system parameters. Analysis of noise disturbance effects

on the system has been accomplished primarily by representing the noise

as a random process in systems modeled as being continuous or as a random

sequence in discretely modeled systems [1,2]. Interest in the propagation

of a random process through a large-scale dynamical system has centered

on quantizing its effect on performance and ultimately on determining

methods by which the effect can be reduced. The traditional approach

on noise propagation problems has focused on the use of Monte Carlo
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techniques in which a large number of computer simulation runs are en-

semble-averaged to obtain statistical results [3,4]. A more modern

approach computes the effects of noise by solving the differential equation

defining the state covariance matrix in terms of system parameters and

the covariance of the input noise. Though well known and widely dis-

- cussed as a technique for linear, time-varying systems [5-7], the method

has also been applied to mildly nonlinear systems by use of appropriate

linearization schemes. In particular, Irwin and Hung [8], Kuhnel and

Sage [9], and Rowland and Holmes [10,11] have presented results for

aerospace and electronic systems applications.

The covariance analysis method can be characterized by its require-

ment for a description of input noise statistics. However, in many cases

those statistics are not well defined or, at best, they may be known

aonly to within some tolerance level of uncertainty. The question arises

regarding the usefulness of the covariance analysis method when a complete

probabilistic description of the input process is not available. To

this end sensitivity analysis, developed primarily for studies of filter-

ing techniques [12,13], is needed to provide a useful method for determining

6- the effects of errors in modeling input signal covariance matrices.

In this paper a new algorithm for sensitivity analysis is developed

for linear dynamical systems where input statistics are not well known.

The direct covariance propagation concept for linear systems with specified
stochastic inputs is extended by considering variations in input noise

statistics. Error analysis techniques based on specified input covariance

matrices are reviewed initially for background information. A direct

stochastic sensitivity analysis algorithm is then developed by expressing
these covariance matrix equations in vector form and applying error
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propagation concepts to the resulting vector equation. A generalized

sensitivity analysis foraiulation is presented to establish the validity

of the new sensitivity algorithm, Brief example, s are considered through-

out the paper, but more complete numerical results are reserved for a

separate section following the algorithm development.

PRELIMINARY ERROR ANALYSIS CONSIDERATIONS

As a basis for the main results to be developed later, consider the

linear, time-varying, dynamical system represented by the vector

differential equation

.1(t) = A(t) x (t) + B(t) w(t) (1)

where x is an n-dimensional plant state vector, w is an m-dimensional

disturbance vector, and A and B are n by n and n by m system matrices,

respectively. Let w(t) be a vector of white noise processes with mean

uiw(t), and let the covaridnce matrix associated with w(t) be defined by

ww
SE{[w(t) - i'w Ct)] [w(') - 1I~w(T)] T} = Qw_(t) 6(t-T) (2)

* where 6(.) is the Dirac delta f,nction.

Let P(t) represent the state covariance matrix, i.e.

P(t) " E{[x (t) -~(t01 [i(t) -~(t)]T  (3)

where i x(t), the mean of x(t), may be determined from (1) by replacing

w(t) by jiw(t) and x(t) by ix(t). It has been shown that P(t) satisfies

the matrix differential equation [1,2,5,7] given by
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P(t) = A(t) P(t) + P(t) AT(t) + B(t) Qw(t) BT(t) (4)

This result is sometimes referred to as the direct covariance algorithm

[11].*

Suppose Qw(t) in (2) and (4) is not known exactly but lies somewhere

on the bounded range between Qw K(t) and Q (t). The correspondiq values

of P(t) from (4) may be calculated to yield PI(t) and P2 (t). Sticn an

error analysis based on deterministic variations from some nominal con-

ditions, such as Q t) = Q (t) and P(t) = PN(t), may be simplified
W N

when bounded variations 6Qw(t) occur above and below Q (t), i.e.
W -!N

(Q - Q) < Qw <(Q + 6Q (5)*~ w-w

The resulting differential equation for 6P(t) is given by

6P(t) A(t)6P(t) + 6P(t)AT(t) + B(t)6Qw(t)BT(t) (6)

Therefore, P(t) varies between Pl(t) = PN(t) - 6P(t) and P2(t) =

F(t) + 6P(t) for the variations of Qw specified in (5).

Example 1

Suppose a steam-driven piston is used to impart a starting velocity

condition to aircraft on a carrier deck. The steam pressure after each

firing varies randomly on the piston. By neglecting the aircraft dynamics,

It should be observed that the covariance results of this paper are
applicable to linear systems and) hence, are not dependent upon the mean
value of w(t). However, extensions are possible for an approximate
analysis of mildly nonlinear systems, for which the coefficient matrices
A(t) and B(t) are, in general, affected by pw(t). These extensions

are discussed in a later section of the paper.
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it may be shown that the piston motion can be modeled by a first-order

linear system of the form

= -a x + b w(t) (7)

where the state x is the piston velocity, a is the ratio of the drag

coefficient through the slotted rail guide to the piston mass, and b

is the product of the pressure difference and the piston area-to-mass

ratio. Random variations in steam pressure are assumed to be a Gaussian

white noise signal w(t) with a constant variance Q If Q is originally

set at QWN and then varied in both directions by a fixed amount 6Qw,

the problem is to determine the resulting variations in the state covar-

' Iiance P(t).
The direct covariance algorithm in (4) may be used to propagate

the nominal value of Q w(t) to yield
w2

b2 Qw

PN(t) = PN(O)e-2at + 2. (1 - e 2at) (8)

Variations about this nominal solution may be computed by using the

deterministic error analysis procedure, which yields from (6)

6P(t) = 6P(O)e -2at + b2 (6Q - e2 at (9)

Comfparisons are indicated in Figure 1 between these deterministic results

in (8) and (9) and corresponding results from the stochastic sensitivity

analysis algorithm to be developed in the next section. Numerical

data for these curves were obtained for a b = 1, 0.5, and

P N(O) 0'O

= 0
1
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P(t) 04

.3- STOCHASTIC RESULTSFROM EQUATION (19)

.2

I 2 3
t

Figure 1. Comparison Between Stochastic and Deterministic Sensitivity
Analysis Results for Examples 1 and 2.
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STOCHASTIC SENSITIVITY ANALYSIS

The worst-case deterministic error analysis of the previous section

may be expanded to provide results that are less conservative. Using

the same techniques required for deriving (4), a similar error propagation

equation for sensitivity analysis may be developed for deviations in

P(t) due to stochastic variations in the input noise covariance matrix

" Q (t).

Let the matrix P(t) be expressed in terms of its column vectors

pj forj = 1, 2, ... , n as

P t) =(21l P-2' ' Pj "' Rn)  l)

Therefore, one may form the vector p with n(n+l)/2 components as the

distinguishable elements of P, i.e.

[P 2]u2 2

• (11) "

13
jP-j U.

JJ

Un

where the notation [Pj]u denotes that only the upper j components

of the vector nj are retained in forming p. Similarly, since Q is an
P-i w

m by m symmetric matrix, the vector q of dimension m(m+l)/2 may be formed

as
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L1
i _q : u2* .j 

(12)

Um

Let the covariance matrix of q be defined by

E{[(t) -i (t)] [&(T) QT(t)6(t-T) (13)

where it is assumed that q(t) is a vector of white noise processes.

Corresponding to the uncertainty in Q the covariance matrix associated

with deviations in P may be expressed as

P (t) = E([p(t) - p(t)] [L2(t) - (t)AT} (14)

where i P(t) is the vector of dimension n(n+l)/2 corresponding to a

rearrangement of the elements of P(t) from (4) with Q (t) = Q (t).
w W

Expressing P(t) in terms of its column vectors as in (10)' and ex-

panding according to (4) yields for the jth column vector p*. the vector

differential equation
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=A + y, d a.pk + B d bT (15)j k_1 ' k:- k~ k!k= 1

where and b are n-vectors representing the jth columns of A and B,

respectively, and d is defined as an n-vector with zero elements every-

where except for a single unity element in the kth row. Equation (15)

may be expressed for all j between 1 and n in the vector-matrix form

as

Rp :Ap_+rq (16)

where repeated component differential equations in (15) have been omitted

in a manner similar to that used in forming p in (11). The matrices

A and r are n(n+l)/2 by n(n+l)/2 and n(n+l)/2 by m(m+l)/2, respectively.

Applying error propagation concepts as in (4), the matrix differential

equation for. the sensitivity covariance matrix P t) is

P (t) = A(t)P (t) + P T T (17)

which is the main result oO this paper.

Example 2

Let the scalar system (7) of Example 1 have a Gaussian white noise

input w(t) with a covariance matrix Qw which is uniformly distributed

on the range (Q - SQw' Q + 6Q ). The problem is to apply the sto-
wN wwN w

chastic sensitivity analysis algorithm (17) to determine corresponding

variations in P(t).

The stochastic sensitivity analysis equation in (17) for this scalar



example becomes

4
Pp(t) =-4aP (t)+b 4 Q (18)
p p q

where Q for the given uniformly distributed random pro-.ess may be easily
q

computed as (6QW)2/3. Therefore, the solution of (18) is

P (t) = P (0) e"4 at + 0 -
p p 12a (19)

Figure 1 compares these sensitivity results with those in (9) for

the parameter values specified in Example 1. In particular, the one-

sigma band PN(t) + I Pg-Y is shown for the stochastic algorithm.

While this comparison is interesting, it should be recognized that two

different situations are being considered in Examples 1 and 2. In

Example 1, the error 6Qw, i.e. the variation of Qw from QW , is known exactly.
WN

The resulting deterministic analysis yields the exact variation in P(t)

from PN(t). On the other hand, the stochastic problem in Example 2

has a randomly (uniformly) distributed Q over a given range. Consequently,

the one-sigma band on P(t) about its nominal may be determined according

to the stochastic sensitivity analysis algorithm in (17).

A GENERALIZED SENSITIVITY APPROACH

It is instructive to reconsider the problem of the last section

in the more general context of nonlinear transformations at the system

input. If the uncertainty in Q (t) is due to the presence of a second

white noise process r-vector, the nominal covariance matrix Qw (t)

must be determined from the joint probability density function of

w(t) and s(t). It should be observed that the resulting Q _N(t) may be
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different than that obtained previously under the assumption that s(t)

is non-random. If Q (t) is different, then (4) may be applied to yield

a new itominal state covariance matrix Pl(t), which includes elements

due to the propagation effects of the modified w(t). Moreover, the

sensitivity analysis procedure described earlier remains valid if variations

about the new P (t) are considered.

Suppose the joint probability density function relating the components

of w and s is given by

fw~ss( ,  =fV.,Is ( Js = ) fs ( (20)

Let Q (t) be defined at any time t as

£ T:~Q E{w Vw] [-p,,
]T

(t 5 V(wR ) (W 11) Tf _ ( :L=) cdd (21)

where the inner integral denotes an m-fold integration over the in com-

ponents of w and the outer integral an r-fold integration over the r

components of s. Moreover, let Qw be a matrix of random variables at

any time t defined as

w =  f (Q" -1w ) ( P w) T fws (dIs w (22)

It follows from (21) and (22) that Q E{(Q w which may be evaluated
-N

as

Q = E{Qw = Qwfs(.6) d6s (23)

----------------------------------
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becaute the uncertainty in Q is assumed to be due to the randomness ofw
s(t). The resulting N is different from that which would have been

obtained from (22) by replacing s by its mean I. Therefore, the covar-

iance matrix associated with the uncertainty of Qw, i.e. Q (t), must
be computed by using fs(s) as shown in the following example.

-

Example 3

Consider the system (7) of Example 1 with a scalar white noise input

w(t) which is uniformly distributed on the range (pw-s, iW+s). Let

s(t) be a second uniformly distributed white noise process on the range
(Ps-, Is +a), where ps and a are positive constants. The problem is

to determine the nominal state covariance matrix PN(t) and the sensitivity

analysis variations about that nominal as a function of time.

Since s(t) and Q w(t) are not identical in this example, the nominal

variance of w(t) will be different than the value which would have

been obtained by assuming that s(t) is non-random, i.e. s(t) I ps"

For later reference, this value is given by

P +P 2
wE+(w s2 f 21 2 Ps (24)

WN= J w 2is  d 3

1j-s

and the resulting expression for PN(t) from (4) would have been

b2 2PN(t) P e(O e2at + b"s (l-e-2at) (25)

6a

The correct QWN (t) may be determined from (21) as
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11 +ac 11 +6
S W /~ '-

w (26)[i I's-aZ lw-S6

which yields

2 2

wN + -- (27)

39

From (22) ,

2 f w(s : dw (28)

QW =f W- Pw WI

Therefore, the variance of Qw, denoted by Qq, may be calculated as
.:w q

q E{(Q2-Q = 22 21 d6

=115{QQ .6 2 /3 + )2
4 2 2 + T5 ) (29)

Using (27) and (29), the corresponding values of PN(t) from (4) and

P (t) from (17) are
4 p

, ~lO~-2at b 2 
2_  

c ' ) le
2 a t )

P (t) = 2at + a s +
3 -9

and 
(30)

(t) P (O)e4at +- k - ( + - ) (l'e' 4 at)

p p 4a 7- s 1

(31)

The results in (30) and (31) are plotted in Figure 2 for a = b = s =1,

a = 0.5, and PN(O) Pp (0) = 0. Also included for comparison purposes

is a plot of PN(t) for the case where s(t) is assumed to be non- random



.30

forcz a'
.25-

.10) .

0 
2

3

Figure 2. Stochastic Se~sitivity Analysis Results for Example 3.
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(a=O). This example demonstrates the importance of determining the
correct Q and Q for use in error propagation and sensitivity analysis

W N q
studies for general aerospace and electronic systems applications.

NUMERICAL RESULTS

Consider the second-order linear electronic circuit shown in Figure

3 and described mathematically by

" + 1 W(t)VI= R VI + I I

2 R c v2 + RK v1  (32)
:j~~ 2 RC2  2 2

where RIC 1 = 1, R2C2 = 1/2, and K =1/2. The source voltage w(t), applied

for all t > 0, is a zero-mean Gaussian white 'oise process with an in-

completely specified variance Qw The uncertainty in Qw is directly

attributable to the fact that the standard deviation of w(t), denoted

by s(t), is also a Gaussian white noise process. The mean of s(t) is

1.0 and its variance 0.1. The problem is to determine the propagation

effects on the voltages across the capacitors, i.e. vl(t) and v2 (t),

I K TR1 Re

w(t) C1  V,(t) C 2  vlt)

Ficure 1. A Schematic Diagram of the Second-Order I.inear Elec.tronic
Circuit Described by EqCuation (32)

- *
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due to the given white noise input w(t).

The value of Q for use in (4) may be detemined trom (23) as
WN

QWN E{Qw} f Qwfs s) ds

6 2 f (6 c + p2

f s S

where the variance Qw has been replaced by the square of the standard

deviation s(t). The expression in (33) yields the second moment of s,

which is equivalent to the sum of its variance and the square of its

mean. The component equations in (16) corresponding to (4) with Qw =

Q may be written as

PN 2allPN + 2al2PN w

11 a 11N 12 N

PN12  11 (a11+a22) PN + al2p (34)

PN2 a21PN 2 PN I alN2

PN2=2a21P~l + 2a22PN22'"

22 12 22

The given resistor and capacitor values for the system in (32) yields

a,1 = -1, a12  0, a21 
= 1, and a22  -2.

The value cf Q for the stochastic sensitivity analysis may be
q

determined as

Q = E[(Q -QN)2} = E{Q2 I
'I WW w QW

NN

-E{s
4  Q (35)WI

2 2  22
2a s S +21S)
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where the evaluation in (35) has been performed by expanding E{(s- )2} =
2 S)

2 , E{(s-ps) 3 } 0, and E{(s-P )4= 3r4 and then substituting for E{s
4}

as indicated. Therefore, the component equations in (17) for PM(t)

become

p 4all p + 4a12  +Q
Pil ll 12 +  q

PI2 a21 PPl + (3a11 + a22 ) P2 + a 2PP3 +2a2PP22

2a21 PP12+ 2(a11+a22) p+ 2a12 PP23  (36)

= 2a21 P + 2 (a11 + a22) P + 2a12 PP23.

= 21 P + 2a21 P + (a11+3a22) P + a12 PPP23 a PPI3 P22 PP23 PP33

PP33 4a21 + 4a22 PP33
t.

Numerical results are shown in Figure 4 for the equations in (34)

and (36). In particular, it is demonstrated that the one-sigma bands

from (36) about the nominal noise propagation results from (34) vary

considerably in magnitude. The bands for Pal(t), P12 (t), and p22(t)

were determined as PNl (t) + V PPl Mt) PNl2(t) + / pP22 (t), and

PN (t) + / t) , respectively. The other components of P(t) Mwere

22u to R

used to determine the correlation between the band thicknesses in Figure
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Figure 4 . Stochastic Sensitivity 
A n l s s R u ts f P h e c r i t o

Figure~ 3. 
A a y~ e u t o' t e C r u t o
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4. Correlation coefficients were defined as

A
=l p (t) / p tP12 P P12 P Pll ()PP22 (t)

A

P 13 PP3 p (t) PP33(t) (31)

A

P 23 ) P 23
( t ) / P22 t ) pP33 t )

Starting at slightly higher values for t 0 0, these coefficients decreased

monotonically to approximately 0.77, 0.56, and 0.93, respectively, after

t x 1. Therefore, there exists a strong correlation between the

thicknesses of the one-sigma bands for the given circuit in Figure 3.

DISCUSSION AND EXTENSIONS

A Gaussian assumption on the input signal w(t) is not required for

the validity of the stochastic sensitivity analysis algorithm, although

such signals frequently occur in practice. When the components of w(t)

are jointly Gaussian, the resulting probability density function of the

linear system state x (t) is also jointly Gaussian and, hence, may be

written explicitly in terms of P(t) and the state mean px(t). Moreover,

if w(t) is an m-vector of Gaussian colored noise signals, then an appropriate-

ly designed shaping filter may be utilized to yield an equivalent higher-

order linear system having a Gaussian white noise input. In those cases

where either s or w is a random bias signal, i.e. random variable, the

noise propagation algorithm must be modified accordingly [1ll.
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The stochastic sensitivity analysis algorithm may be applied for

an approximate analysis of mildly nonlinear systems by considering linearized

incremental variations about nominal operating conditions [10,11]. In

such cises the nominal trajectory N(t) is obtained by replacing w(t)

and xt) iA the nonlinear system equations by p.(t) and xN(t), respectively.

The resulting ti!.:a function 4(t) is treated as an approximate estimate

of the meen valie 'af the system state x(t). A Taylor series expansion

of x(t) about x,(i;) in terms of the variations 6x(t) is truncated after

first-order terms. Neglecting second and higher-order terms is reasonable

if the dynamical system is mildly nonlinear. Such linearization schemes

io filtering applications, where the nonlinear system state is observed

in the presence of additive measurement noise, has led to the variational

and extended Kalman filtering algorithms in common -use today [14]. An

extension of the stochastic sensitivity analysis principle to these

filtering applications should yield some immediate useful results.

Finally, it is worthwhile to consider the similarities and differences

between the concepts developed here and those utilized in [15]. An im-

proved digital integration algorithm for mildly nonlinear systems was

derived in [15) by considering variations upon variations about the current

state. The similar concept of stochastic variations in Qw upon stochastic

variations in the input signal w(t) has been used in developing the

algorithm of this paper. A major difference in the two applications

is that exact integration results were obtained for linear systems in

[15] by using a single variation, and further variations yielded no new

information. On the other hand, a stochastic variation upon a stochastic

variation provided useful exact sensitivity results in the present paper.

Primarily of theoretical value, an extension analogous to the higher-
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order deterministic variations for nonlinear systems in [15] would be the

consideration of higher-order stociastic variations ad infinitum in the

input noise statistics and the tolerances on their specification.

CONCLUSIONS

A direct stochastic algorithm has been developed in this paper to

provide sensitivity analysis information for linear systems with input

statistics which are random. The elements of the input signal

covariance matrix have been treated as white noise processes with known

statistics and covariance propagation concepts applied to yield the

new algorithm for determining stochastic variations in the state covariance

matrix about its nominal. Numerical results for a second-order system

have been presented to demonstrate the computations required in using

the algorithm.
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APPENDIX

COMPUTER PROGRAM FOR THE STANDARD METHOD

OF MONTE CARLO SIMULATION

The program for the Monte Carlo technique using the standard

method has been included in this Appendix. A second-order system was

used to obtain Monte Carlo results for 25, 50, 100, 200, 500 and

1000 runs for comparing the results with other methods as discussed

in Chapter II.

Statements 35 through 46 were used to generate zero-mean, unity-

variance, Gaussianly distributed random numbers. Subsequent instruc-

tions were used for the calculation of the output variance and the

percentage error on the output variance. The Runge-Kutta second-

order formula (RK2) was used for integrating the second-order system.

1 5

1?4
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I DIMENSION XE(2)tX12 M(Z)(2,A41(2),S(I1O)SOL(10),D1FL1OhZENilQI
2 T-0.
3 H a 0.05
4 IS

7MTOTaNtOTAL/10
IDO 31 NmlNTOT

9 S(Nj - .
10 XEMNiN- 0.
11 31 CONTINUE
12 XIEA0o.
13 IX231571
14 DUNsO6.
15 SIG - SQRT( 1./H)
16 60 82 1-1,40
11 IF(1.EQ.1) GO TC 81
is UF(I*EQ.2) GO TO 81
19 IFiI.EQo4) GO TO 81
20 IF(IoEQ.8) GO TO 81
21 If( I.oEQ.Z0)IGO TO 81
22 1 FI I oEQ.401GO TO 81
23 Go0T00$
24 It NUN a 25*1

24 MUNI X NUM*XNUN
27 EKNM XNUN - 1.0
a# XhUN3 XNUM/XNUM2

j0 0(1 32 mwJJNUm
31 l )O
32 E()0

J3 00 42 N&19MTOT

36 LVaIY1I1045

39 UsAX/10465749
40 IFIU159516
41 5 Urn-U
42 4 CONTINUE
43 1 xg y
44 lSWRSIJT-2*0C'ALOGIOUM~l*SIG
45 XhORM *GQCS(b.283Il*Ul+XMEAN
44 DUMMU
47 CALL XEQN(XfKM0oXNUR~l

j * 00 21 Ku1,NS
49 23 XSlK).XE(AJ+M*XM0lK)
so CALL XEQNCXSvXN1,EN0RMi
51 DU. 24 KmltNS
52 24 XEM lmXE(KJ #0 5*H*I KNO(Kl+XNLI(Kl
53 52 COINTINUE
54 SIN) *SIN) + XE(1)*XE~1)



r 1261

55 ~ AEifk) z XEM(N) + XE(13
S& 42 uuI W Il*E
57 32 CCNTIMUE
5b5 mk1TE16114)4UK
59 64 F jNNAT(IX*//8 NO. OF RUNS 6*'153

60 lmEITE169151

62 a3 FjrMNAT(Tl1TlETZ5e$S(fAj9rT38M.SOL(NA3.#T3D1:(NA)OT6U.
63 1'XEM(AmJ
64 UCs 62 NA-1,isTOT
65 XhAaNA.
6b T311*XfA*1O.
D7 SO. (NAJ zO.0833333333s-0. S*EXI-Z. OST) *0.66666667*EXP(-3. *y)
be3 1-0925S EXP(-4.0*T)
69 XEII(kAJ - EM(NAI*XEX !4A 3/I NUHOANUM)
70 XEIIINAI - XENINAI*XNUd43
71 SINAI - S(NAI/XNUMZ- XEM(NA)
72 VIF(NA) =100.0.(S(ftAJ-SOLtNAI)/S0L(NAJ
73 mkLTE(b,7)TS(NA),SDL(NA),OIF(NA),XEMINAI
74 7 FOiMAT(l0XF52 t4F15.61
75 62 C(E4TINUE
76 PRITE(b*151
77 15 FORNAT(//

Tts S551.
19 OL 97 NAwlvKTOT
80 SS1USSl+A5StIFINAIJ
81 SINAI IS(NAI4XENINA))#XIUM2
di2 XEH(NAI a SIQRT(XEH(NAI/XNU1I3)*XNUM
ts3 97 CWiTINUE

85 ok1 TE (bt941 Sl
86 94 FuRNHAT(ZOX, 'PER CENT ERKOk a '9F2098)
87T 11NUM
68 82 CONTINUE
89 STOP
90 ENO

I 5Ii8ROUT1N2 A.q4XC,XN0.RT)
2 011NENSIOn X9121 tXMD(2)
3 HAMIL1)-XOI.2
4 XM&(Iz-2.O*X(1)-3o0*X0(2J+RT
5 ikETURN
6 END



APPEIDIX C

THE COMPUTER SOFTWARE PACKAGE APPLIED TO

THE LARGE-SCALE MISSILE SYSTEM

This appendix includes the implemented computer software package

on the thirty-third order math model of a six degree-of-freedom air

defense missile systesm. In addition to the modification of the origi-

nal program, the nine subprograms which have been implemented ae

COEFF, COVAR, RUNGKP, MDERIV, SNOISE, DETARA, INTA2M, RANDU, and

RA14DG.

The main program initializes all the covariance matrix elements

and other variables used in the program. Subroutine INTA2M initializes

the coefficient matrix elements. The SYSINT subprogram updates the

nonlinear terms of the coefficient matrix, enters Subprogram COEFF

to evaluate the coeffirients for the implicitly related variables,

and calls the COVAR subprogram where the covariance differential equations

are calculated. These eqiations are then integrated by entering

RUNGKP from SYSIN'. Subroutines SNOISE and DETARA are used to

calculate the variance of the noise introduced in the SEEKER program.

A listing of all subroutines is provided on the following page

to indicate their location within this appendix.

127
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Subroutine

MAIN 129

iNITIA 138

INTA2M 139

BLOCK DATA 140

SYSINT 141

RANDG 146

RANDU 147

FUNCTION XLIMIT 147

RK4 148

RUNGKP 148

SYSRUN 149

COEFF 152

MDERIV 159

COVAR 160

SEEKER 162

FUNCTION DEAD 162

SNOISE 163

DETARA 164

VANEMD 165

TARGET 166

ROTATM 168

TRANS 169

TRANSM 170

AUTOPT 172

AERODY 173

DTLUX1 175

THRCON 176

INTRP3 177

PRDATA 178

DATA 181
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2 C TERMINAL HOMING - ALL DIGITAL SIMULATION
3 C
4 C
5 C **- BLANK COMMON HOLSES AERODYNAMIC COEFFICIENTS AND DERIVATIVES IN
6 C *.* TABULAR FORM FOR USE BY THE 1, 2, AND 3 VARIATE LOOK UP SCHEME.
7 C
8 COMMON DXDYDZ16C) ,IADD(201 9AERO(1360)
9 C
10 C *** COMMON BLOCK /T IMES CONTAINS CURRENT TIME STEP LENGTH AND OTHER
11 C *** EVENT TIMES !N THE SIMULATION.
12 C
13 COMMON /TIMES/TDTtTBCtTSTOP, IPRJLAUNCH
14 DOUBLE PRECISION T*DT
15 C
16 C *** PROGRAM SELECTICh (MODULE TEST OR SYSTEM RUN) AND MODULE TEST
17 C **s DATACWHEN MODE=2)
18 C
19 COMMON /CNTRL/MOOE, MDLS(4htIVvDATAM(L6t4)
20 C
Z1 C *** COMMON BLOCK /AUTOP/ CONTAINS INTEGRATION VAPIABLES, DERIVATIVES
2 L ** AND INTERMEDIATE VARIABLES REQUIRED BY ,HE AUrOPILOT MODULE

23 C
24 COMMON /AUTOP/NA9VA(15)3DVA(15) OV(7)
25 C
26 C *** COMMON BLOCK /SEEKR/ CONTAINS INTEGRATION VARIABLESt DERIVATIVES
27 C *** AND INTERMEDIATE VARIABLES REQUIRED BY TNE AUTOPILOT MODULE
28 COMMON / SEEKR/ NS.VS(2JqDVS(21tOSV(8)
29 C
30 C *** COMMON BLOCK /VANEW/ CONTAINS INTEGRATION VARIABLES AND DERIVATIVES
31 C *** REQUIqED IN THE VANE ANGLE CALCULATION MODJLE
32 C
33 COMMON /VANES/NVVVt4)vDVV(4)9DEL(3)
34 C
35 C *** COMMON BLOCK /ROTATE/ CONTAINS ROTAIONAL VARIABLES AND OEFIVATIVES
3o t, **0 USED IN THE MISSILE MOUULE
37 C
38 COMMON /ROTATE/NR tPB tQB qRb, THETAtP-II #PSI 9OPBOQBDRBDTHAt DPHI
39 1,DPSISNTHACSTI-A,SNPHI ,CSPHItSNPSI tCSPSIWPWQWRBTHETAtBPHBPS
40 t,
41 C *** COAHON BLOCK /STATEV/ CONTAINS TRANSLATIONAL VARIABLES AND
42 % ;** DERIVATIVES
43 C
44 COMMON /STATEV/NTUEtVEtWEtXvYZtDUEDVEtDWEDXDYDZ
45 C
4o C *** COMMON BLOCK /ADDV/ CONTAINS ADDITIONAL VARIABLES DERIVED FROM
47 C *** lHE STATE (INTEGRATION) VARIABLES
48 C
49 COAMON /ADDV/ALJ.PALFABETAtXMNCSPHIPSNPHIP,QUEVSSRHO
50 C
51 C *** COMMON BLOCK /COEFS/ CONTAINS THE THRUST AND AERDYNAMIC
52 C *** COEFFICIENTS AND DERIVATIVES OBTAINED BY TABLE INTERPOLATION
53 C
54 COMMON /COEFS/TFRtAERC(I8)
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55 C
56 C * COMMON BLOCK CONTAINS AIRFRAME CONSTANTS GOVERNING AERODYNAMIC
57 C * FORCES AM4D THRUST MISALIGNMENT
58 C
59 COMMON /GEOMK/SDATCGYTCGtl.TCGRLIRLZWUEWVEWWE
60 C
61, C **COMMON BLOCK INS INCGI CONTAIMiS MASS, INERTIAS AND CG POSITION OF
62 C * THE AIRFRAME PLUS THE CONSTANT VALUES FROM WHICH TbEY ARE OBTAINED
63 C
64 COMMON /M$INCGISIWOUFXIXOXIYORLCGORDCGORDCGPXMXIXXlY,

65 1RLCGsRDCG
66 C
67 C W*COMMON BLOCK /FCEMOMI CONTAINS THE AERODYNAMIC FORCES, MOMENTS,
b8 C * AND THRUST MISALIGNMENT COMPONENTS
69 C
70 COMMON /FCEMOM/FXAFYAFZAXMXA,;XMYAXMZAFTHXFT~tFTHI
71IC
72 C * COMMON BLOCK /INCEPT/ CONTAINS TARGET POSITION AND VELOCITY,
73 C * TARGET-MISSILE INTERCEPT SPEED AND RANGE AND INPUTS TO THE SEE(ER
74 C
75 CUMMON /INCEPTIUT(3),XT(3)hTNVELTMRNGEBEPSZBEPSY
76 C
77 C * COMMON BLOCK /TRANSFI jCONTAINS MATRICE4 FOR CONVERSION FROM
78 C *SVARIOUS COORDINATE SYSTEMS TO.OTHERS
79 C
80 COMMON /TRANSF/BCSECS(3t31,ECSBCS(3,3)IBCSGCS(3,3ltECSGCS(3Ip3)
81 C
82 C * COMMON BLOCK CCtNTAINS UTILITY VALUES SUCH AS GRAVITY ACC. AND
ui3 C **RADIANS TO DVIREES CONSTANTS.
84 C
85 COMMON / AUTOK/ WQGDQGTAUZiTAUY, TAUL, GYZtRAIRBZWP1IOP IRKlv
86 IPYAKIPY8KlPYI K1,WQ1,DQIPYLIMRLIMGBIASQBIASRBIAS
87 COMMON /VANEK IVGAINVL1MtVRLIM
68 C')MMON / SEEKKI SKSP* SKSY irSAMP OrS AMP, CROS PT,#CROSTP, SYGB!S, SLGBIS

89 COMON /UTILTYIGRTD
390 COMMON /VMGI H,MS

91 COMMON IVMGIIPl(33,33hDP8(33p33)
92 COMMON IVMG9IJUNKVTIMEIVTIME2tVNOISONUMMNOMNAL
93 COMMON I8LOKIIOTH
94 COMMON /BLOCK1IP(33,33J ,OP(33,33btDP9t33,33)
95 COMMON /aL)CKZI A2(33933),KIKKOUNTKICKKAT,02(2)tK400
96' COMMON / BLOCK7/KK3,THRPPTIMP
97 COMMON IBLOCK8IKKIKK5,VP

9tj COMMON IBLOCK9iKOK, IS1
99 COMMON IBLIK2I AVD(4)tBVO(4)
loo ~COMMON ISNSEI AREA( 3IhEZNOISEYNOI SVBEPSVBEPSZvVBEPSY

Lol COMMON IMBLOK1IKOUNTlXNORM(4btSI(33,401
102 COMMON IMBLOK2IS!GlDUMXMEANiXNl,11,12,KIN2
L03 COMMON IMBLOK3/ S2(33940)
L04 COMMON IMVMGIS3(4OhtKINTERK0NTER
105 COMMON IMVMG1IJXYNORM(33) ,DAMUSIGUXMEANUIS2
LOtj CUMMON IMVMG2/TEPSTG(33i,KIT,IKPR,TMVE,TMRNG ,EZTMPEYTMP
101 COMMON /NVMG3IS4(331
108 DIMENSION LBL(LOhtTRANFR(331
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CARD
109 C
110 C ***.*********S*************'**e********
LIL C VTIMEI -- CONTROLS SWITCHING TIME FROM MONTE CARLO TO COVARIANCE PROGRAM
112 C VTIME2 -- CONTROLS SWITCHING TIME FRCM COVARIANCE TO MONTE CARLO PROGRAM
113 C VNOISD -- CONTROLS THE NOISE INPUT IN DEGREES IN SUBROUTINES - TARGET
114 C AND SNOISE.

115 C NUN -- CONTROLS THE NUM6ER OF MONTE CARLO PUNS.
116 C JUNK -- USED FOR PRINTING OUT A MATRIX ELEMENTS ONLY ONCE IN SUBR. SYSINT.
117 C 0TH -- USED AS A STEP SIZE FOR COVAR IN SYSINT SUBR.
Lla C KQUNT - CONTROLS THE FREQUENCY OF CALCULATIONS OF A MATRIX COEFFICIENTS
119 C KAT -- USED AS COUNTER FOR COVAR INTEGRATION ROUTINE.
120 C KICK -- CONTROLS THE FREQUENCY OF PRINTOUT FOR THE COVARIANCE MATRIX
121 C KKIt KK3, KKSK400 -- USED IN CUEFF SUBR. TO :ONTROL THE CALCULATION.

122 C 821) -- B MATRIX ELEMENTS USED IN COVAR SUBR. FOR CALCULATING P(191)tP[4t41
123 C AVO(It BVD(I) -- USED FOR CALCULATING NL SA' MATRIX COEFFICIENTS IN
124 C SYSINT AND VANEMD SUBRS.
125 C PICIKI. DPS(I K)t DP9(IK) -- USED AS TEMPORARY STORAGE FOR COVARIANCE

126 C INTEGRATION
127 C KIT -- USED AFTER SWITCHING FROM COVAR TO MONTE CARLO PROGRAM.
128 C IKPR -- USED TO PRESERVE THE VALUE OF 3PR.
129 C KINTER -- ATTAINS A VALUE OF NUMi.1 IN MAIN AND DOES NOT CHANGE THEREAFTER.
130 C KONTER -- USED IN SYSRUN AND INITIALIZED IN MAIN TO CONTROL SWITCHING FROM
131 C COVAR TO MONTE CARLO PROGRAM AFTER VTIME2.

L32 C NI, KI -- USED IN SYSINT TO CONTROL THE ENSEMBLE-AVERAGING INTERVAL.
133 C IS2 -- USED TO CALCULATE RANDOM NUMBERS EQUAL TO THE ORDER OF THE SYSTEM.

135 C
136 READ(5,1|SKSPSKSYTSAMPtDTSAMPCROSPTtCROSTP,SYGBIStSZC S,
137 IWQGDQGTAUZTAUYtTAULtGYZtRAIRB2,WPlDP1,RK1,PYAKIPYBKL ,PYIKI,
138 2WQLtDQLPYLIMtRLIMGBIAStQBIASRBIASPBtQBRBUEVEWEt

139 3THETAPHIPSIXiYtZSDXTCGtYTCGZTCG RL1tRL2pWUEWVEWWEtS IOt
140 WF, XIXOX IYO ,RLCGD ,ROCG0,RDCGP, VGAIN ,VLIMVRLIM
141 C
142 WRITE(4) SiSPSKSYTSAMPDTSAMP,:ROSPTCROSTPSYGBIStSZGBIS

1;3 LWQG DQGT A J Zt TAUY TAULt GYZ , RA L, R B21P 1PIt RK 1, PYAK ItP YBK1 PYIKI,
144 2W01 DQ1 ,PYLI MtRLI MtGBI AStQBIAS , RBIAS PB, QBt RBtUEvVEWEt
145 3THETAt PHI tPS I t X tY ,Z SD. XTCGt YTC3 ,ZTCG tRLItRL2 , hUE tWVE t WWE SI ,WOt
146 4WFtXIXOXIYOtRLCGORDCGORDCGPtVGAINVLIMtVRLIM
147 C
148 C **************************S***********
149 C TO RJN THE PROGRAM AS NOMINAL, COVARIANCE, OR MONTE CARLO OR THEIR

L50 L COMBINATIONSt USE THE FOLLOWING INITIALIZATIONS.
1!)1 C NOMINAL FLIGHT
152 C VTIME1 - 0.0
153 C VTIME2 - (THE VALUE OF ITSTUPI)

LZlt C KINTER - ('NUN*+')
155 C KONTER = (INUM+11)
156 C NONNAL - 0

L57 C COVARIANCE PROGRAM
158 C VTIME1 - 0.0
159 C VTIME2 a (THE VALUE OF 'TSTOP')
160 C KINTER ('NUM+1')
6l1 C KONTER a ('NUNM'I

162 C NOMNAL - I

*/t......
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CARD
163 C MONTE CARLO PROGRAM
lot# C VTIMEL - (THE VALUE OF 'TSTOPO)
165 C VTIHE2 - (THE VALUE OF ITSTOP01
166 C KINTER = I
167 C KONTER - 1
168 C NOMNAL m 1

170 C

171 VTIMEL = 0.0
172 VTIMEZ = 12.02
173 NUN - 25
174 iINTER - 26
175 KONTER = 26

176 NOMNAL - 0
177 VNOISO = 2.0
L78 C
179 C ********w**S.***************.**.*....,
180 C NOI41NAL -- MONTE CARLO PROGRAM
181 C VTIME1 a 0.0
182 C VTIME2 - (SPECIFY THE SWITCHING TIME)
183 C KINTER = (INUM 1)
184 C KONTER = ('NUN#.I')
185 C NOMliAL=0
186 C COVARIANCE -- MCNTE CARLO PROGRAM
187 C VTIMEI - 0.0
188 C VTIME2 = (SPECIFY THE SWITCHING TIME)
189 C KINTER x ('NUM.1')
190 C KONTER = ( N69 410
191 C NOMNAL a 1
192 C MONTE CARLO - COVARIANCE PPOGRA
L93 C VTIMEt = (SPECIFY THE SWITCHING TIME)
194 C VTIME2 = (THE VALUE OF ITSTOPI)
195 C KINTER = 1
196 C KONTER v 1
L91 C NOMNAL - I
19d C MONTE CARLO -- COVARIANCE -- MONTE CARLO PROGRAM
199 C VTIMEI - (SOECIFY THE SWITCHING TIME)
200 C VTIMEZ x (SPECIFY THE SWITCHING TIME)
201 C KINTER =1
Z02 C KUNTER = I
Z03 C NCMNAL = 1
204 C
205 C
206 NUMMuNUM +" 1
207 JUNK x 1
208 ISL - 0
209 DTH a 0.0
210 EZNOIS = 0.0
211 EYNUIS = 0.0
212 VBEPS w 0.0
213 VBEPSZ - 0.0
214 VBEPSY : 0.0
215 KIKKsO
216 KIKI x 0
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217 KOUNT = 10

2.18 KAY s O
IL9 KICK - 40
220 Klt x I
221 KOK S O
222 K400O 0
223 KKI x1I
224 KK3 s O
225 KK5 s O
226 VP x 1.0

221 B12(l) - 6750.0
228 82(2) = 6150.0
229 TMVEL = -0.10
230 TMRNGE w 1.0000.1
231 00 88 IwI,4

232 AVOI) a 0.0
233 88 VOI) • 0.0
234 DO 29 IlMS
235 00 29 KwItMS
236 A2IItK) 0-O

237 DP(ItK| 0 O

238 Pl(IK! u 0.0
S O DP9(IK) 2 0.0

240 O0P9(1,K)-0.
241 29 P(ItK) =0.
242 C SUBROUTINE INTA24 IS USED TO INITIALIZE THE A MATRIX COEFFICIENTS

243 CALL INTA2N

244 READ(5p621(AREA(I1b1,3O)
245 AREA(31) = 0.0
246 C
247 C *** READ THRUST AND ALIODYNAMI: TABLES FROM CARDS

248 C
249 WRITE (6 9001

250 KNTI = I

251 KN2 - 3
252 IL = 1

253 30 READ ( 5,510) I,J,Kt(OXDYDZ(LIL=KNTIKNT2),LBL

254 IF II.EQ.919)GO TO 40

255 WRITE (6 .9201 LBL

256 KNTI - KNT2+1
251 L a KNT2/3

258 IADDIL) a IL

259 KNT2 - KNT2+
260 IF (J.EQ.O)J;l
261 IF (K.EQ.O)K'll
262 IU - I*J*K 1.

"I

263 READ ( 5t930) (AERO(L)#L-ILtIU)

264 IL a IU1
265 GO TO 30

266 40 CONTINUE
267 G - 3a.17

268 KID = 57.2957795
269 C
210 C C*, CALL INIIIA TO INITIALIZE THE PROGRAM AND READ RUN DATA
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CARD
271 C
272 CALL INITIA
273 C
274 NSI 33
275 XNUM u M"N
276 XNUMI a XNWN*XNUM
277 XNUMZ * XNUM - 1.0
2.76 XNUM3 m XNUN/XNUN2
279 NTOTAL x 1200
280 MTOT a NTOTAL/40
281 Ix a 31571

282 DUN w 0.1
283 JX - 28651

284 DAMU = .12

285 SIGU = 1.0

286 XMEANU = 0.0

267 KIT 0
288 IKPR = 40
289 00 1004 IS=lt5
290 1004 YNORM(IS) = 0.0
291 DO 1005 IS=,1S
292 1005 TEPSTG(IS) = 0.0

293 Do 31 K=LtMSI
294 00 31 N1=1,40
295 S2(KI*NI) a 0.0
296 31 SI(K INl) = 0.

297 DD 81 1=1140
29 8 81 S3(I) = 0.0
299 Do 308 I=1,9S

300 S4(I) x 0.0

301 308 TPANFRI) = 0.0
302 XMEAN = 0.
303 00 32 MI = 1,NUMH
304 00 33 1=1,4
305 33 XNORM(I) = 0.0

306 WP = PB*RTD

307 WQ = QB*RTO

308 %R 2 RB*RTD
309 BTHETA x THETA*RTD
310 uPH a PHI*RTO
311 BPS - PSI*RTD
312 TMVEL -- 0.10

313 TMRNGE c 10000.1

314 NI 39
315 KI * 40
316 KOUNTIl 0
317 C *******Ss* ****=
318 IF(VTIMEI.EQ.O.OGO TO 32

319 C
320 NS - 2

321 VS(1) = 0.
322 VS(21 = 0.
323 NT z 6
324 NR 2 6

• | >, '
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325 NA 15
326 00 4 IS-1,15
327 4 VACIS) - 0.
328 V
329 DO05 IS-1*4
330 5 VV(IS) 0.
331 UT(l3 0.
332 UTZJ) - 0.
333 UT(3 = 0.
334 XT( I) = 10000.
335 xT(23 = 0.
336 XT(3) = 0.
337 RE41NO 4
338 C
339j REAO(4) SKSPSKSYTSAI4POTSAMPCROSPT, CROSTPSYGBIS,SZGBIS,
340 IWQGOOGTAUZiTAUYTAULiGYZ ,RAIR82,WP~iOP~iRKL,PYAKltPYBKL,PYIKL,
341 2WQ1,OQIPYLIM,RLIM,GBIASQBIASRBZASPBQBRBUE.VE,WEt
342 3THETA,PHI,PSliXY,ZS,DXTCGVTCGLTCG,RL1,RL2,WUE,WVE,WWE,S1,Wo,
343 4WFXIX0,XIYO,RLCGOROCGORDCGPtVGAINVLIMVRLIN
344 C
345 OT =0.250-02

4346 IPR 40
347 CALL INTHRC
348 CALL INTRAN
3t#9 CALL INAUPT
350 [F(KINTER.EQ.NUMM)GO TO 32
3 1 C **CALL TOTAL SYSTEM RUN CONTROL R~OUTINE
352 C
353 CALL SYSRUN
354 KINTER - KINTER. 1
355 32 CONTINUE
356 IF( VTIMEI.EQ.0.O)GO TO 306
357 00 302 I1,N9S
358 DO 302 IMxlMS
359 DP9(I,1M3 S2(,tNZJ*S2(IMN2)*XNUM3/XNUHI
360 J02 DPB(I,IN3 - DPal IIM3/XNUM2 - DP941,IM)
361 P(32,32) - DP8C32,32)
362 P(33,33) x PSI 33,331
363 DO 305 1-1,31
364 00 305 1141,31
365 P11,114) - OP6(I,IM)
366 OPS(It,11) 2 0.0
367 305 DP911,IM) = 0.0
368 DO 304 114=1,145
369 00 303 NI=1,MTOT
370 S2(l14,14) =S2(IM,Nl)*S2(IM,NI)*XNUM43/XNUM4I

371 SlI 11,14) S1(114,NI3/XNUM2 - S2(IM,NL)
372 303 CONTINUE
373 304 CONTINUE
374 00 311 IMuIMSl
375 311 WRITE(6,2OZ3IM,(Sl(I14,NL),NL11,MTOTI
376 WRITE(6,988)(S3(I),I=1,MTOTI
377 IF(VTIMEL.GE.TSTOP)GO TO 307
378 306 00 36 1.1,4
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379 36 XNORNII) 0.0
380 CALL SYSRN
38L IF(VTTD'E2.GE.TSTOP)GO TO 307
382 C ***********#
383 GI - 0.0
384 G2 a0.0
385 0P9(Ltl) - SQRT(P(1,1))
386 00 101 I=2,MS
387 101 0P9(1.1) - P(1,1110P9(1,1)
388 00 102 I=2,14S
389 Kal-1
390 D0 103 1.fr1,K
391 103 G1 - G1 + DP9UJIl)*0P9(lJtl)
392 0P9(II) - SQRT(P(li,)-G13
393 00 135 JM4,MKS
394 IFRJM.LE.Ii GO rO 105
395 00 104 ?41a1,K
396 10'. G2 x62 + 0P9(Mltl)*DP9(MltJN)
397 oP9tIj141= (F(1,JN) -G23/0P9(1,I)

398 105 CONTINUE
399 102 CONTINUE
400 C ************
( 40 1 tiUMN x NUM
402 00 34 MI. 1,NUN
403 00 35 1=1,4
404 35 XNiORMCI) = 0.0
405 NI - 39
406 KI a40
-to? KOUNTI= 0
408S C***********
4.09 T u VTIME2
*.10 OT a 0.0025
411 C***********
412 CALL INSYST
413 CALL INRK4
414 00 114 114=1,MS
415 114 TRANFR(IMI - TEPSTG(IM)
416 IS2 =14S
417 CALL RANOU
418 DO 115 1=1,MS
419 DO 115 1t4=1,1
420 115 TRANFRMI = TRANFRMf O P9(lNIJ*YNORN(IM)
421 00 113 11L,15
4.22 113 VACI = TRANFR(Il
423 UE =TRANFR(16)
424 VE =TRA4JFRI17)
425 WE = TRANFR(18)
426 X -TRANFR(19)
427 Y -TRANFR(201
428 Z =TRANFR(21)
'.29 PB = rRANFR(22)
-.30 Q8 = rRANFR123)*
431 RB - TRA'JFf(241
432 THETA =TRANFR(25)
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C AR0
433 PHIn TRANFR(261
434 PSI- TRANFR(271
435 00 3 IS - 194
436 3 VV(IS) a TRANFR(IS#.271
437 VS(L) TRANFR(32)
4323 VS(21 a TRANFR(33)
439 IPK a IKOR
440 TMVEL =(MVE

441. TMRtNGE =TMRNG

rot Z WP - PB*RTD
443 W* Qt*RTO
444 W4R = RB*RTD
445 GTHETA x INETA*RTD
446 BPH - PHI*PTO
447 BPS - PS1*RTD
448 OSV 113 - EZTMP
5449 OSV(21 - EYTHP

45L C wsCALL TOTAL SYSTEMt RUN CONTROL ROUTINE
452 C
4:i3 CALL SYSRUN

455 34 CONTrINUE
,t5o 00 203 l1H1,MS
457 00 204 NI - L1t4TOT
458 S2(IMtNI) uS2CiNNLI*S2(INN)*XNUM3/XNUM1
459 SL(IM#Nl) = S111149Nll/X(NUM2 - S2t1MNL)
460 204 CONTINUE
*461 203 COITINUE

462 D0 211 IM=1,NS
463 211 WRITE(6,202)IM,(SI(IMNNlINI-LNTOT)

464 WRlTE(6,988)(S3(I)v121,MTOTl
465 3C7 STOP
4oo L FORMAT(a(BffO.4/1)
4*7 62 FORMAT QOFS .61
468 202 F0lMAT1//1Xt'VARI',I2,,jN13 ml7EI5.5/5(L3X,7E15.5/11
4o9 900 FORMAT (IHI# 50X,'T-H AERODYNAMIC TABLES')
470 910 FORMAT (313, I(,3Fl0.O, 10A4)
471 920 FOR MAT 1/45X910A4)
472 930 FORMAT C8010.O)
473 988 FOR.NAT(/IXtlSTIMqE -',10F10.5/8Xt IOFIO.5)
474 END
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1~ SUaROUTINE INITIA

2 C**
3 C TAItS ROUTINE READS VARIOUS RUN DATA FROM CARDS AND INITIALIZES
4 C THE RE4AINDER OF THE PROGRAM
5 Cs.
6 COMMON /:NTRL/NODEHDLS(41 ,IVOATAM(1694)
7 COMMO4 /TIMES/TvortrBOTSTOPIPRJ ,LAUNCH
8 COMMON /STATEV/NT,UEIVEtW,X,YtZ
9 COMMON /ROTATE/NRP8,QbRBTHETAPH1,PSI

10 COMMON /INCEPT/UT(3),XT(3)
11 COMMON /GEOMK/SD,XTCGtYTCG,ZTCGRL1,RL2WEteEVEMWE
12 )OUBLE PRECISION TADT
13 (.ALL INTHRC
14. CALL INTRAN
15 CALL INAUPT
16 READ ( 5t900) MODEMDLSiVIrIrCGIRAILIWIND
17 GO TO(20,3OhvMGOE
1a 20 READ( 5,930) (CATAMIJL),Ju1,16),CDATAN(J,2)tJJuh4)
19 READ ( 5,940)DT,TSTOP,IPR
20 IFCIV.NE.OIREADC 5#9IO1UEtVE*WE,- ,Y*ZsP8*Q8sRB,TH6TA,PH19vSI
a1 IF fIT.NEoOIREADl 59910)UTvXT
22 IF(ITCG.NE.OIREADC 5t9IOIXTCGYTCGLTCG

j 2) IF(IRAIL.4lE.O3REAOI 5,910)RLLRL2
24 IF(IWIND.NE.DIREAD( 59910)WdUEtWVEvWWE
25 RkETtJRN
Z6 30) 00 40 ta1,4
27 IF (MDLS(II.EQ.O)GO TO 40
28 READ( 5,920 DATAMCLIl
29 READC 5,910) (CATAMCJtI),J-2,16)
30 .0 CONTINUE
31 RkETURN
32l 903 FORMATrCIbI5)
33 910 FtJRMAT18FI0.O)
34 920 FORMATCP2O.OI
35 933 FORMAT (20A4 I
36 940 FORMAT(2Fl0.OI10)
37 END

............
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I SUBROUTINE INTA2M

2A~ COMIMO UN IT/iT

3 C04MON /BLOCKZ/ A2( 33933)
4 COMM4ON / AUTOKI WQGDQGTAUZPrAUYTAULGYZRA1,RB2,WP1,op1,RK,
5 1PYAKLPY3,(1,PYlKlIOI PYLIMRLIM,GBIAS,QBIASRIIAS
6 TMp1 a WQI*WQ1
7 TMP2 - 2.*GQ1*WQg'
8 TMP3 - PYAKI*PYBKL
9 TMP4 - PYAK14+PYBKI

'10 TMP5 = WQG*WQG
11 TMP6 = Z.*%DOG*WQG
12 TMP7 - PYIKI*1WQ1*WQI/T4P3
13 C
14 C s*CONSTAUJ #At MATRIX ELEMENTS
15 C
16 A(1,1) z-3.*TAUZ
1? A2(1,2) = AIJZ*A2(Lo1)
18 A2(1,3) =-TAUZ*TAUZ*rAUZ
19 A2( 2p ) =1.
20 A2(392) = 1.

*, j21 A2(494) =-3.*TAUY
*22 A2(4,5) zTAUY*AZ(4,4)

23 A2(4,6) =-TAUY*TAUY*rAUY
* I24 A245,4) = 1.

25 A2(6,5) =1.
26 A2(7,7) =-2.*DPI*wPI
27 42(7,8i = -WP1*WPI

28 A2(79261 -AZ(7t8i*RTU

30 42( 10#2) -TMP7
31 A2(1003) '-Tt4PT*VAUL

32 A2(10,0) UTHP?

33 42(10,6) a-42(10@3)
31i A2(10#10) a=TMP2
35 A2(10,111 x -TMPl
36 A2( 10,23)wURTO*TMP7
37 A2(10924) *-AZ(10,23)
38 A2(11,10) m 1.
39 A2(12, 2) a 42(10, 2)
40 A2(129 3) a A2(10, 3)
41 A2(12t 5) a A2(10o 5)
42 A2f12t 6) a A2(10, 6)
43 A2(12,10) u TMP4.AZ(10,10)
44 A2(12,11) x r14P3.AZ(10,11)
45 A~2(12,23) 0 A2(i0,23)
4b A2(12@24) a 42(109241
47 A2(13,2) a -TMP?
46 A2(1.~,3l - -rMPI*TAUL
49 A2(13951 a -TI4P7
50 A2(13961 0 A2(13,3)
51 A2(13,13) a -TMiPZ
52 A2113914) = -TMP1
53 A2( 13, 231 0 A2( Us,23)
54 12(13t24) u A2(13,23)

noi it .j
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55 A2(149131 a I.
56 £2115, 21 - A2113# 23
57 A2115, 33 x A2(139 33
58 *2(15, 53 4 *2113, 5)
59 AZI 15t 6) - £21 13, 61
53 A2115,131 = TMiP4#A2113#131
61 A21L1511 - T14P3G£2(13914)
62 £2115%233 - £21 13,233

a3 A2(15#241 A 2(13,24)
64 A2(19,16) =1.0
65 £2120.17) -1.0
0p6 A2(21,183 =1.0
67 £21 26,2212 1.0
68 RE(RuN
69 END

I BLOCK rDArA
2 COMMION /SEEKFI NSvVS(2),DVSIZ)#OSV 183

*3 '-34MN SEEKKI SKSP,SKSY,TSAMPOTSAMPCRUjSPTCROSTPSYGBISSZGBS
4 COMMON /AUTOP/NAPVA(153,DVA1I5IOVI 73
5 COMMON / AJTOK/ WCGDQGTAUZTAUYTAUL,6YZPRt1RB2,WPIDP1,RK1,
6 IPYAK1,PY8KIPYIKiWQ1,DQ1,PYLIMRtLI MGBIASQBIASRBIAS
I COMMON /VNES/NVVV(4,DVV(19 OELI 3)
8 C04MNON /VANEK /VGAINVLIMiVRLIM
9 C0~4MON /VI4G/ Hv,34

10 DATA HtHS/0.0025133/
11 DATA SKSPSKSYISAMPDTSAMPCROSPTCROSTPSYGBISSZGBIS/3 .93.#..
12 I1.050.,O.90.9O./
L3 DATA NSVS/ 2,2*0.0/
14 DATA WQGDQGTAUZTAUYTAULGYZRA1,RB2,WPI OPIRK~iPYAI(1,PYBKI,
L5 IPY1K1,,WOlDQ1,PYLU4,RL1MtG61AS,0BtAS,RBIAS/373.,1.,15.,15.,2.,
16 26750.,12.,60.,130.,.53,.33,40.,15.,2.8,115.,.64,15.,7.,1.,0.OO.0/
11 .0'IMUN /4STCC/SI,WO,WPXIXOXIYORLCGO,RDCGO,RDCGPXMXIX,XIY,
is 1PLCG,'RDCG
L9 COmM34N /k0TATE/N'qPB,Q8,R8,THETAP14I,PS1,PDP80B,0ftBDTH£,DPHI
20 1,DPSItSNrHACSTHA,SNPH1,ZSPHI,SNPS ,CSPSIWFWQ,WRBTHETABPHtBPS
21 COMMON /STATEV/NTL'EVEWE*XYtZ, DIEDVEDWE,DX,Y,DZ
22 COMMON /IY!LTY/G ,rTD
23 CO'44ON /GEOi4i/SDXCG,YTCSLTC3,ftLIRL2,hiUE@WVE,WWE
24 COMMON /! NCEPT/UT (3 1XT (3) tTMV;L ,Tt4NGEBEPSZ#SEP SY
25 DATA GRTD/32.l?t57.2S.57795/
26 DATA NTNR/o,6/

Is LO.,0.t0.,0.,-40.I
19 DATA NAVA/1SIS*0./
13 DATA NVVGA!t4,VL1MVRLIM/4 ,15.,20. ,200./

U ATA VV/4*0./
.52 DATA SDXTCGYTCGZTCG/.267,.58,f;2.75,0.tO./
33 DATA RL1,RL2,hUEWVE#WWE/3.5,6.07,O.,0.,0./
34 DATA SIW0,VO,XIXO, XIYOpLGO,R030,RtfDCGP/95.,11.194,.24115.
35 111,2.54,-.3759-.15/

36 DATA UT/3*0./
3? DATA XT/IODOO.,O.#0./
38 EN~D



CARD
I SWdROUTINE SYSINI

3 C THIS ROUTINE INTEGRATES ALL EQUATIONS OVER I TIME STEP
4 C**

3 COMMON /TIMES/T*CTTBOTSTOPIPR#J ILAUNCH
6 COMMON /STATEV/NT#Vr(63,DVr(6)
7 COMMON /IROTATE/NRtiVR(6),DVR(61,SNTHACSJHASNPHICSPHItSNPSZCSPSI
b ItwPtwQvwRtBTHETA*BPHtOPS
9 COMMON /SEEKRI tSVS(ZI,'&)VS(Z)tOSV(8l

10 COMMON /AUTOP/NAVA(15),OVA '15),DVAO(7)
11 COMMON /VANES/NVoVV14h*OVV(4liDELI3 I
12 COMMON /H4SINCG/SIWOW9%XIX0,X!Y0,RLCGORG;CGOROCGPXXXXxIY
-13 1aRLCGtROGG
14 COMMON /VANEI( /IGAINsVLIM#VRLtM
L5 COMMON I AUTOKI WgGOgGvTAU1,TAUVtTAULGYZRA,RZWPIOPl1fK1.
16 1PYAK1,PYBK1,PYIK1,WQIOQIPYLIMRLIMGRIASQ$IASRBIAS
17 COMMON /VMG/ HeMS
18 COMMON iVMGl/P1(33#33),OP8(33t33J
19 COMMON /VMG9/JUNK tVT IMELiVT: X'- A".0IS O NMMv N01NAL
20 COMMON IaLOCKIIP(33,331 oOPg33,33) ,DP9(33,33)
21 COMMON /bLOCK2/ A2(33,33),KIKKOUNTKICKKATB2(ZIK400
22 COMMON /BLOCK4/ VY5(419OLTC(4)
23 CoMNON /BLOKI/DTH
24 COMMON /BLIKI/BPhiISM
23 COMMON /BLIK2/ AVOf41 ,BVDI4)
Zc. COMMON /INCEPT/UT(3),XT(3),TMVELTNNGF
27 COMMON /M8LOK1/KCUNTIXNORM(41,S1(33,40)
28 COMMN' /M6aLOK2/SIG1,DUMXMEANIXNII1,12,KINZ
29 COMMON /MdLOK3/ S2(33:401
30 COMMON /MVMG/S3(40hvKPi'TER
31 COMMON /MVMG2/rEPSTG(33),KITIKPRtMVETMRNG tEZTMi ...TMP
32 COMMON /1MVMG3/54(33)
33 DOUBLE PRECISION TOT* IjALFDT
34 OIMENSO*4 QT(12hvQR(1Z),QA(301,QV(81
35 C
36 C **********s*
37 IF(T.LT.VTIH4E2)GU TO 4
38 IF(KIT.tiE.O)GO TO I
39 KINTER I
40 KIT a I
41 00 1 IS a1,15
42 1 TEPSTG( IS) =VAC IS)

(3 00 2 IS - L@6
44 TEPSTG(IS+151 = VT(IS)
45 2 TEPSTG(IS.21) =VR( IS)
46 00 3 lS*1,4
47 3 fEPSTG(JS*27) - VV(IS)
48 TEPSTG(32) a Sl
49 TEPSTG(331 a VS(211150 IKPR = IPR

51 TMVE - TMVEL
52 TMRNG a TMRNGE
53 EZTMP aOSV(L)
54 EYTMP - OSV(2)

. ..-..
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55K WRITE(6,8)(TEPSTGI),I-in133ITNV~tuR ETPETP,

56 8 pFORMAT(8EL5*6/41SE15.6/1)
57 C
58 C
$9 4 IF(KtNTER.EQ.KNUNM)GO TO 191
60 7 OTT -SNGL(OT3
6L SIGL- SQRT(1./DTT3
62 11 a1

b3 12 a2
64 CALL RANOG
05 I 1 3
66 12 4
b7 CALL RANOG
b8 191 00O40KUT =1,4
69 GO TO 130*10,20,10),KUT
70 10 T a TI-IALFOT
71 GO TO (l5v2Oh*J
7Z L5 CALL THRCON
73 20 CALL AUTOPT
74 CALL VANEI4D
75 CALL TRANSM
76 CALL ROTATM
77 30 CALL RI(4(NA,VA,QAKUT)
78 CALL RK41NVVVGVvKUT)
79 CALL RK4(NTVTtQT,KUTI
bo CALL RK4INRVR#QR,KUT)
81 40 CONTINUE
82 CALL AUTOPT

ai CALL VANE14D
a4 CALL TRANSM
U5 CALL ROTATH

bC
ds IF(KINTER.NE.NUNr0GO TO 1001
69 IF(T.LE.VTIME1)GO TO 1001

90 IFfNOMNAL.EQ.O3GO TO 1001
91 C *******
92 C
93 C
94 C * N,14L1NEAR 'A' MATRIX ELEMEN~TS
95 C -. 01GTO2
96 IF(ABS(BPHISM).GE.( RLIN .01)GTO2
97 A2(9,71 RK1*IRA1RBA773)/RAL/RBZ

98 AZet8) RK1,U.*A2(798))IRAI/RB2
99 A2(9,26) =RK1*A2(7,26IIRALIRSZ
1O0 GO TO13
1L)1 12 A2(9,7) 0.0
102 A2(9t3) 0.00
10 A219t26) - 0.0
WJ4 13 IF(ABS(VA(IZ1)hGE.(PYLIM--001)) GO TO 22

105 A2126,121 - VGAIN
L06 A2(30,12) - VGAIN
107 G0 TO 23
108 22 A2(289 12) -0.0
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239 A2(30912 0.0 3 O3

Ii AZ(t'9tIS3 - VGAIN
112 AZ(3L,15) - VGAIN
113 GO TO33
114 32 A2129,15l =0.0
Lis A2(31,151 =3.0
116 33 IF(ASS(VV(1)l .GE.( VLJN-O.0J.) SO TO 42
L17 A2(289281 - -VGAIN
118 GO TO 43
119 42 A2(28t28) -0.0
120 43 IF(ABS(VV(211 .GE.( VLIM-O.OO111 GO TO 52
L21 AZ( 299291 a -V3AIN
122 GO TO 53
123 52 A2( 29,29)1 0.0
124 53 IF(ASS(VV(311 .GE.( VLIM-O.0O1I1 ;0 TO 62
125 A2030,30) a -VGAIN
126 G0 TO 63
127 62 A2(30t30) -0.0
I/dd 63 IF(ASS(VV(411 .GE.( VLIM-0.0OI) GJ TO 72
L29 72 A2(31:3l) -- VGAIN

$130 2 A(l~)x.
132 73 '.ONTINUE
133 IF(A8S(AV0(l)).GE.(VRLIlM-0.0O1)) GO TO 83
134 A2(28971 - AZ(9t7l*VGAIN
L35 AVMWe8 - AZ(9,83*VGAIN
136 A21,2809) - 0.1*VGAIN
137 -42(28,261 .AZ(9,261*VGAIN
138 GO0TO84
L3i 83 A2(28#71 - 0.0
140 A212M,8 a 0.'O
141 A212809) - 0.0
142 AZ(28,12) -0.0
143 A2(28t26) =0.0
144 A2(28#28) =0.0
145 84 1V(ASSAVO(2)).GE.(VRLI4-O0O01)1 GO TO 93
146 42(29,7) - A2(Z8t7)
147 A2(29#81 - A2(26,S)
14d A2(2999) - A2(28991
149 A2(29,26) x 2120t26)
150 GO TO 94
151 93 A2(29,7) - 0.0
152 AZ(29,8) - 0.0
153 A2(29t9l - t0.0
154 42(29,L1 *0.0
15i A2(29,26) -0.0
156 A2(29,29) =0.0
157 94 IF(ABS(4VD(3)).GE.IVRLIM-0.001)I 30 TO 103
158 A2(30t 7) --A2(2897)
159 A2(309 8) 2-42(28,8)
160 A2(30t 9) -2(28,93
161 A2(30t26) s-A2(28,26)
L62 GO TO 104
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CAR D
1 3 103 AZ(30,7) x 0.0
Lct. A2(30t 8) =0.0
165 A2(309 9) 20.0
146 A2(30,12) =0.0
167 A2(30,26 -0.0
10a A2(30,30) =0.0
169 10i IF(ABS(AVO4)).GE.(JRLI-0.0O1)) GO TO 113
170 A2(31, 7) -A2(30,7)
171 A2(31, 8) =A2(30t8)
172 42(31, 9) =A2(30,9)
173 A2(31,26) A2(3026)
14 GO TO 114
175 113 A2(31,7) = 0.0
L76 A2(31, 8) =0.0
177 A2(031, 9) =0.0

178 A2(31,15) = 0.0
179 A2(31,26) =0.0
180 A2(31#31) =0.0
181 114 IF(BVDOI).LE.O.OJGO TO 133
182 A2(28,7) = 0.0
183 A2(28,8) - 0.0
184 Az( 289) = 0.0
L85 A2(28,12) =0.0
106 A2(28,26) =0.0
167 A2(28,28) =0.0
168 133 IF(BVD(Z).LE.O.O)GO TO 143
189 42(2917) = 0.0
190 42(29#8) = 0.0
&9)L A2(29,9) = 0.0
192 A2(29,15) 20.0
193 A2(29,26) =0.0
194 A2129,29) -0.0
195 143 IF(dVD(3).LE.0.0)GO TO 153
196 A2(30,7) = 0.0
197 A2(30, 8) =0.0
198 42(30, 9) =0.0
1B 9 A2(30,12) n0.0
200 A2( 30,26) 20.0
201 A2(30,30) 20.0
202 153 IF(BVD(41.LE.O.O)GO TO 163
203 A231,7) = 0.0

"04 A2(31, 8) =0.0
2u5 A2(311 9) =0.0

206 A2(3L, 15) a 0.0
237 A2(31,26) =0.0
203 AZ(31,31) =0.0
209 163 COI4TINUE
210 A2(25,23) ,CSPHI
211 A2( 2(, 241 a-SNPHI
212 A2(27,23) : SNPHI/CSTHA
213 A2(27,24) 2 CSPHI/CSTHA
214 A2(26,23) a SNTHA*A2(27,23)
215 A2(26,24) a SNTHA*A2(27,24)
216 A2(25,26) a -VR12)*SNPHI-VR(3)$CSPH!
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217 AZ(26#25) -A2(2SZ6)/(CSTHA*CSTHA1
218 A2127#261 a (-VR(31*5NPHIVR(2)*-CSPHII/CSTHA

219 A2(26.26) sAZ(27v26)*SNTHA
220 A2(27,25) a-A2(26,25)'SNTMA
221 IF(KOIJNT.NE.LOJGO TO III
222 KOUNTO
223 CALL COEFF

226 DO 333 IxItHS
227 333 WRITE(6v344)Iv(A2(ItKJK*1,lJ
226 JUN4K * 0
229 C *s**.*****
230 III 0TH a SNGLIDT)
231 0TH - DT/2.0

4232 00 222 IJ-192
233 KAT - 1
234 DO 222 IJ-l,2
235 CALL COVAR
236 CALL RUNGKP
237 222 KAT - KAT + 1

239 IF(P(IIt1II.GE.1.OE-IO36O TO 29

24-t 29 CONTINUE
245 IF(KICK.NE.40)GO TO 299

24 RITE (6 ,I25) (VT CI)9I-4t6J
248 C********
249 WRITE(6,1Z4)T
250 D0 288 IwI,NS
251 288 WRITE(6vII)I,(P(IvKIK-1II
25Z K.ICK - 0
253 299 CONTINUE
254 <ICK 9 KICK + I
255 KOJNT x KOUNTGl
256 344 F0OeAT(/I1XA(12,, AI 2',7EIS.5/41IX97E1S.5/1)
257 IL. FORI4AT(//1X#'P('912#', J) =,t7E15.5/4(1IX,7El5.5/11
256 124 FORNMAT(IX o'TIME x'tFB*4)
259 125 FURMAT(f Xs',El5.59*YxE15.5.'Z',tE5.5)
ZaO C*****************
2ol 1001 IF(KINTER.EQ.NUNNJGO TO 6
262 C**************e**
263 N aNI ,,
264 IF(NI.NE.KL)GO TO 6
265 KI a NI +. 40

a266 N2 v NI/40
267 00 201 IM 0 1,15
268 S2( IMNZ) a S2(INN2) +. VAC IM)
269 201 SI(IM,N2) a SJ(IMIN21 + VA1IIM)*VAIN)
210 00 202 IM=1#6
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CARD
271 S2(114415,NZI - S2(IM415tN2) + MTIN)
272 202 Sl(IMg415o,42 - S1C1N41L5,N2) + VT(INJ*VTIIMJ

274 S2ItImt21,NZI S2CIN.2lN2) + VR(IMJ
275 203 S1(!N42±,N21 SI(1M421,N21 +- VA(IN)*VP.IINI
276 DO 207 lNul,94
277 S24IMi-ZTN2J S2CIM42T,N2) + vvEljN
27d 207 SI(IM427,N2) Slt IM+2?t421 + VV(IHI*VV(IMI
279 DO 208 IM-1,2

280 S2(IM431,NZ) a S2tINO'3lN2) + VS(IN)
28L 203 SI(IM+31,N2) 2 S1(IM+31,N2) + VS(INi*VS(U43
232 IF(T.LT.(VrIME1 - 0.0O25).OR-T.GE.VTIME2)G;O TO 307
2133 D0 303 1=1,15
2a4 303 S4(1) a VAIJI
285 00 304 1=1,6
286 S4( 14151 - VT(11
ZlsI7 304 S4(1+211) VR(I)
2i38 DO 305 !=1,4
289 305 S4(1+27) - VV(IJ
290 00 306 1=1,2
291 306 S411+31) - VS( I)
292 00 301 Iw1,MS

1293 00 301 Imu1,ms
f29,4 301 0PS(ItIM) = 0P8(I,1143 S4112*S4(IM)

29i 307 TL - SNGL(T)
296 S3(N2) = 1
297 b RETURN
298 ENTRY INSYST
299 HALFOT x *5DO0*.)T
Joo RETURN
301 END

CARD0
I SUBROUTINE RANOG
2 C0'4MON /MBLOK1/KOUNrIoXNIqRM(4),Sl133940)

3 COMMON /M8L0K2/SIG1,DUMtXMEANIXN1,I1,I2,91 PADO

C NUMBERS 'XNORM'

8 IY$19971*IX
9 IYP=IY/1048576

10 IX=IY-IYP*1048576
11 AX-IX
12 U-AX/1048576.
13 IF(U.LE.0.OIUu-U
14 IX-IY
15 Z-SQRT(-2.0*ALOG(DU4))*Si'vl
16 X-:3RM(11) = *C0S(6.283184U)+X4EAN
17 XNORM112) Z*SIN(6.28318*iJ)4XMEAN
i8 DUM=U

17 RETUR41
23 END
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CARD
1 SUBROUTINE RANDU
2 C

* ~~~~~~~~~3 C *********e*s******S*************..
It C THIS PROGRAM GENERATES YFL WHICH IS UNIFORMLY DISTRIBUTED IETWEEN 0 AND I

I ~~~~~~~~5 C *********s***********************e
6 C
T COMMON /MVMGI/JXYNORN(.333,DANUSIG UXNEANU,152
a 00 1 Iz1,152
9 JY -JX*65539
10 IFCJY.LT.OJY-JYZ147483647+1
11 JX JY
12 YFL JY
13 YFL sYFL*0.4656613E-9
14 Z - SQ~tT(-2.0*ALOG(DAMW'*SIGU)
15 YNIJRNCI) - ZOCUS(6.28318*YFLI4XMEANU
16 1 0AMU z YFL
17 RETURN

18 E~ND

:ADO
1 FUNCTION XLIM!T(V*VLIM)
2 IF(ABS(VI-VLIM)40,40,91O
3 10 IF (VJZO,30,30
e. 20 XLIMIT =-VLIK
5 PETURN
6 30 XLIMIT aVLIM *

7 RETURN
8 40 XLIMIT aV

V RETURN
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1 SUBROUTINE RK4(ANViQiKl
2 C**
3 C THIS ROUTINE INCREMENTS VARIABLES, GIVEN THEIR DERIVATIVES ACCORDING
4 C T3 THE.PUN3E-KUTTA 4 POINT SCHEME.
5 C**
6 COMMON /TIMES/,PDT,9TBOTSrOP# IPRvJl rLAUNCH
7 DOUdLE PRECISION TvDT
a DIMENSION V(N~tQ(N)

00D 50 lIsN
t0 J-4+
11 GO TO(1OZO,30,403,K
12 10 Q(j3 V(Jl
13 Q,,I) -V(I3
14 Vlt) -VtI)+DTOV2*V(J)
15 ~ 3TO 50
16 20 V(I) aQ(I).OTO VZ*V(JI
17 QIS) x Q(J)+V(J)+V(Jl
Is GO TO 50
19 30 V(I) -QII).0T1*VI
20 04j) - Q(J)+V(J)+V(J)
2t. GO TO 50
.2 40 VII) xQlI)+DT1*(Q(J),VIJ))*0.1666667
23 50 CONTINUE
24 RETURN
25 ENTRY INRK(*
26 DTOV2 x SNGL(DT*.5D+0I
27 OTI = SNGL(OI
28 RErURN
29 END

Cf-D
1 SUaROUTINE RUNGKP
2 COMMON IVMG/ HMS
3 COMMON /VMGI/Pl(33t33hODP8(33,331
4 ".OMMON /6L3CKlIP(33,33),DP(33,33)

5COMMON I/LOCK2/ AZ(33933)iKltOU3dTfKCKKAT
6 ~ COMMON /310K1/!DTH
I GO TD(10930),KAT
a 10 00 20 11l,MS

9I DO 20 Jx1,I

4. OP8(IJ) =OP4I,J)
1220 P41,JI aP(I,J) DTH*DP(19J2

13 RETURN
11* 30 VDT xDTH/2.0
L5 DO 40 I-1,MS
16 00 40 J=191
17 40 P11,.)) P1(1,.)) VDT*(0P811,J) 4OP(IJfl

i8 PETURN
19 END
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CARD
I SUBROUTINE SYSRUN

3C TS OTNCOTLSHECALCULATION OF THE #lIS.LE TRAJETORY

4 C AND TARGET-MISSILE INTERCEPT POINT* THE PRINT ROUTINE IS CALLED

5 C AS REOJIRED TO PRINT RESULTS.
6 C**

7 COMMON I IN4CEPT/ Ur(31,XT(3),TMVEL,,TNRNGEBEPSZIEPSV
como COMO TATEV/NTqUSVBWBX(3)vDUE(

6)

9 COMMON /COEFS/THRAERC(1I
10 COM4MON /TIMES/Tt0T,TBOTSTOPIPRtJLAUNCN
11 COMMON /GEOMK/S ,D,XTCG,YTCGZTCGRL1,RL2diUEWVE9WWE

L2 COMMON I SEEKR/ NSBTI4TGBPSIGOSVtIO)

13 COMMON / VANES/ NVtVV(4)tDVV(41*DELQ91DELR,DELP

14 COM4MON /TRANSFBCSECS(3.3),ECSBCSI3,3),5CSG(S(3.
3 )#ECSGCS(3I

15 COMMON 'SLOCKIP(33t33I ,OP(339331

lo COMMON /BLOCK2/ A2(33,33),KIKKOUNTKICKKATB22lK.O
17 COMMON /BLOCK9/KOK

L8 COMMON /VMG/ HMS

19 COMMON /VM4G9/JUNKVTIME1,VTIME2tVNOISO, NUNN

20 COMMON /HVMG/SS(40) ,KINTERKCNTER

21 CO1MON /qVlG2/TEPSTG(33)iKITIKPRTNVE,1MRNG 
sELTMPvEYTMP

22 COMMON /M8LOKI/KOCUNT1,XNOIRM(4,SI
3 3 ,40O

23 DOUBLE PRECISION T,DTSVDT

24 DIMENSION XM0LD(3),TOLD(3J9X$T(
3)

25 C
26 IF(KIT.NE.O)GO TO 4
27 C
28 C
29 C * PRINT DATA HEADING AND INITIALIZE LAUNCHER DYNAMICS INDEX

30 C
31 CALL PRHEAO
3. LAUNCH it I

3 3 C
34 C * INI TIALIZE AERODYNAMICS ROUTINE# DERIVATIVES AND TARGET POSITIJN.

35 C

'36 BELO x:0.0
31 DELR - 0.0

40 t a0.00
4L SEPSZ w.
42 BEPSY a 0.
4.3 CALL THRCON
4#4 CALL TRANSM
45 CALL ROTAYM
46 CALL INTGT
47 BEPSZ - 0.
48 BEPSY s 0.
49 CALL INSEEK
50 CALL AJTOPT
51 CALL VANEND

54 00 5 1.1,3
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CARD
55 5 XSTtI) - X(I)
56 SVDT x DT
57 N a IDINT(OT/.5D-3)
58 IPR a N*IPR
59 OT = .5D-3
60 CALL INSYST
61 CALL INRK4
62 C ******9*****S*
63 4 IF(IPR.EQ.40K=l
64 C **************
65 C
66 C *** INTEGRATE MISSILE EQUATIONS AND CALCULATE TARGET-MISSILE POSITION.
67 C
68 10 KSTEP nO
69 CALL PRDATA
70 20 D0 25 1=1#3

71 XHOLD(I) X(I)
72 25 TOLD!!) = XT(I)
73 CALL SYSINT
74 CALL TARGET

75 CALL INSEEK
76 GO TO (7090)tJ
17 70 IF(THR)80,8090
8 80 J-2

fri CALL ROTLF.P
dO 90 GO TO (75,08 5t59LAUNCH
3L 75 DO0 6 Isl,3
132 76 XMOLD(II x X(II-XST(l) 4
J3 CALL TRANS( EC SBC St XMOLO ,TOLD)

(14 IF tTOLD(II.LT.RLI)GO TO 45

85 LAUNCH a 2
86 WRITE( 69910)T
8 7 GO TO 45
o0 85" 00 86 1=1,3
t9 86 XMULO(I) - X(I)-XST(I)

yo CALL TRANS(ECSBCSXMOLOTOLO)
9L IF( TOLD! ).LT.RLZ)3O TO 45
I Z LAUNCH = 3
93 WPITE( 6,9201T
9,t IPI a IPR/N

N = IOINT(T/SVDT)+L
95 DT a OFLOATIN)OSVD-T
97 CALL INSYST
98 CALL INRK4
99 CALL SYSINT
o00 DT m SVOT

101 KSTEP - MOC(NvIPR)-l
101, CALL INSYST
10. CALL INRK4
104 t 95 GO TO (30, 4O)K
105 C
105 C *** IF HISSILE WITHIN 5 FT. OF TARGETDIVIDE STEP LENSTH BY ZFIRST TIME).

107 30 IF(TNRNGE.GT.5.)GO 10 40
106 DT .5D+0*DT

1*1
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CA'qD
109 IP~k - IPRIIPR

111 C
112 C **IF MISSILE-TARGET RELATIVE VELOCITY is PosrTIVE, INTERCEPT HAS
113 C S*OCCURRED
L14 C
115 40 IF(TMVEL.GE.O.O) GO TO 50
116 IF(T.GT.TSfOPI PETtJqN
117 45 KSTEP - KSTEP+l
118 C
119 C ****e***
120 IF(KONTER.NE.NUHMMGO TO I

LZI 'GO TO 2
122 1 KONTER - KINTER
123 IF(T.GT.VTIMEIJRETURN

124 C

f126 2 IF (KSTEP-IPR)2O,1O,1O
j127 C

128 C **CALCULATE MISS CiSTANCE FROM CURRENT AND PREVIOUS POSITION$
*129 C

130 50 A 0.
131 a 0.
L32 C .
131 00 60 lu1,3
134 TMP1 a XMOL0(I)-TOLO(l)
135 A it A+T4P*TMPL
L 36 TMP2 a X(Ii-XT(I)
137 B a B+TMP2*TMP2
138 TMPI - X(l)-XMOLOII)v
139 60 C a C+TMPI*TMPI
140 AuSQRT(A)
141 BuSORT(S)
142 C a SQRT(CI

143 Z a .5*IA+B.Cl
144 A a 2.*SQRT(Z*(L-AI*fZ-B)0eZ-CJ)/C
045 wRITE ( 6,900) A
146 WRITE(691Z4)T
147 IF(VTIME2.LT.TSTOPIGO TO 61
148 00 286 I"1l,MS

149 288 WRITE(6,11)I,(PlIjK),K.1,!)

151 124 FORMAT(IX.ITIME a ItF8.4)
152 900 FOIMAT (//20Xtf*$** MISS DISTANCE ****',FLO9Z, I FT.')
L53 910 FORMAT (LOX,6 FIRST LUG OFF LAUNCHEA AT T * ,F8.4)
154 920 FORMAT IIOX,'SECOND LUG OFF LAUNCHER AT T It*Fa.41
155 61 RETUJRN
156 END

Sri 11
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C A k
1 SUBROUT114E COEFF

3 C THIS SUBROUTINE CALCULATES THE IMPLICIT #At MATRIX ELEMENTS
4 C**
5 COMMON / SEEKR/NSI1THTG BPS IGBTI4D PSOtEZtEY,3SV( 61
6 COMMON / INCEPT/UT(3) ,XT(3) ,TMVELTMRNGEtSEPSZBEPSY
7 COMMON / AUTOP/NAZPILP2tZP3,LYIZY2,ZY3,ZRL,1Rt2,BPHIS.ZPIIZPIZ,
8 IEOOCRZYII,ZY12,EVNCRZPDItZPOZ,1PD3,ZYO1,ZYD2,ZY03,ZPDIZa02,
9 2ZaPHISOZPID1,IPIO2,EOOCROZYID.,ZYIDZEVNCROEZSSEYSSWCWC

1.0 3IEZRRPEYRR,8OELPC
r1 COMMON / AUTO(/ WQGOQGTAUZTAUYTAULGYZPA1,RB2,WPlO,1,RK1
12 I1PYkKlPYBK1,PYIK,bdQIDQ2.,PYL1NRLI MGBIASQBIASRBIAS
L3 COMMON /STATEV/NTUEVEWl~,X(3),OUEDVEOWEDXtDYOZ
1.4 COMMON /ROTATE/NRqP8,AS ,tBtTHETAtPHI9PS ! tDPBp DQBODR89OTHAv PHI
15 2.PSI, STHAtCSTHASNPI1CSPHI vSNPSI 9CSPSI vWF ,WQpWRv TETAt BPH9 BPS
2.6 COMMON /HSI NCG/SINO, WPXIXO X IYO, RLCGOROCGOt ROCGP,*XM vXIXXI Y9
1T IRLCGiRZDCG
18 COMMON /FCEMOM/FXAFYAFZAXMXAXMYAtXMZAFTHXFTHYFTHZ
19 COMMON /TRANSF/BCSECS(3,3),ECSBCSI3,3),BCSGCS(3,3),ECSGCS(3,3I
20 COMMON /VANEK/VGAINVLIMvVRLIN
22. COMMJN /COEFS/THRCMQCNRCNPCYZCL3tCX0,CMOCOCMC~fCN2,
22 1CLPCL2,CXCtCNQCMOQPtCLORPCMR.CLO
23 COM4MON /AOOV/ALFAPALFABE-TAXMNCSPNIPSNPHIPQUEVAPHO
24 COMMON /T IMES/TODTTBOvTSTOPI PktJo LAUNCH
25 COMMON /GEOMK/SO,XTCGYTCGZTCGRLIRL2,hIUE,WVEtWWE
26 COIlMO.4 /VA4ES/4V,VV(4)tDVV(41#)EL(3)
27 COMMON /UTILTY/GRTO
28 COMMON /VMG/ HMS
29 C0MMON /8LOC1(I/P(33t33)*DP(33933)

30 COMMON /BLOCK2/ A2(33,33),KI1(,KOUNTsKIC(,KAT
32. COMMON /BLOCK6/ BACS(31

12 COMMON / BLOCK7/KK3,TKRPTIMP4
33 CUMMON /BLOCKS/K1KLKK5tVP
34 COMON /8LOCK9/1(OK
35 COMMON /SLOCC2./CUE1,OVEI,IE2.,PB2.,DQBlORBI
36 DOUBLE PRECISlJN Tt DT4
37 0IVE4SIO4 X613) ,BCSEC 21(3t3)tECSBCI(393194VV1(4lDELI(3I
38 KK. -0
39 KK c
4.0 KK13=7

42 KK1622I
'.3 UE2.=UE
44 PP2. = SQRT(A5SIP(16v161)
45 UE - UE f 0.2.
46 IF(PPI.GT.O.. I UE -UEl O.1*PP1
47 GOTO143
48 643 DO02 1 10,
'.9 2 DEL1(I) OELMI
50 IF(ABS(VV(IIJ2 .LE.VLIM)GO TO 3
51 VV( III - XLtMTVV(IhVLIM)
52 3 TMP. - VV(2.I4VV(2)
53 TMPZ = VV(31+VV(4)
54 DELMI 0. 25*1 TMO2.TMPZ)

~,'.p,-v'% ~ ' ' tnai~&............
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55 OELU31 - 0.25'(THPZ-TMPI)
56 Oa(2M - O.25*IVV(2)VVI4-VVC13-VJ(311
57 KKIO
58 GO TO 343
59 543 SNTHAI SNTHA
60 CSTHAI - CSTHA
61 SNPHII - SNPHI

6BtCSECIGJ = BCSCSU.J

68 7 ECSBCI(!G#JJI = ECSBCS(IGtJJ)
69 143 RHOI FHO
70 VPL = VP
72 QUEI = QIJE
73 X4Nl XMN
74 ALFAI * ALFA
75 BETAI = BETA
16 ALFAPI = ALFAP
77 ICSOHII - CSPHID
78c SNPHII - SNPHIP

82 XIYI a XIY

84 RLICG1 POCG
85 THkj THR
86 CMQ1 C4IQf87 CNql v CNR
08 CNPI aCNP
89 CY21 CY2
90 'L31 aCL3

92 CXO I a X0

95 CNQI a CNQ.

100 CLORPI - CLDRP
101 CMDQPI - CMOQP
102 CIill CMR
103 .L01 m CLO
104 343 FXA1 - FXA
105 FYA1 a FYA
106 FZAI - FZA
107 XMXAl x XMXA
108 XMYAI - XMYA

4t
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CARD
109 XMZAI m XMZA
110 FTHXI x FTHX

111 FTHY1 - F7HY
112 FTHZI - FTHZ
1.13 CALL T3MS4
114 IF(K2.EQ.2)GO TO 22
115 CALL THRCON
116 GO TO 22
117 144 AZ(1,Jll (DUEI-DUE)/ZZI
Lis8 A2(11*4IqJl13 (OVEI-DVEI/ZZI
119 AZ(11+2tJ1) - (0WE1-OWEIIZZ1
120 A2(14b,Jl3 (0PB1-DPC31/ZZ1
121 AZ 1147lJ1)- (DQBI-00B2/ZZ1
122 A(11,8*Jllx 1ORBI-ORB)/Z1
123 IF(KK3.EQ.7)GO TO 155
124 1FCKKI.EQ.1)GO TO 555
125 Do 4 1 = 103
12o 4 OEL(I - DELI)
127 GO TO 355
L28 555 SNTHA =StATHA1

129 CSTHA =CSTHAL

130 SNPHI =SNPHI

131 CSPHI =CSPI1l
132 SNOSI = S11
L33 CSPS1 CSPS1I
134 00 171 I~xI93
135 D0 171 JJsI,3
L36 BCSECS(IG,JJ) - 8CSECI(IGJJ)
137 171 ECSBCS(13,JJI ECSBCI(lGvJJI
138 155 RHO a RHOI
139 VP s a

L4.3 VAwVAI
141 QUE QUEI
142 XUIN -XMNl

143 ALFA a ALFAI
L44. BETA a BETAI
145 ALFAP -ALFAPI
14b CSPHIP =CSPHII
147 SNPHIP a SNPHII
148 THRP x THRPI

150 XM aX141
151 XIX X AXI
152 a l XTYI
153 3OCG v ROCGI
154 THR Ta q
152 CMQ aCMQI
156 C NR aCNR;
157 CNP *CNP1
158 CY2 aCY21

159 CO3 CL31
160 CXO aCXOL

161 CMO CHOL
162 COCM - COCMI
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CARO
163 CNF - CNF1
164 CN2 - CN21
165 CIP - CLPL
166 CL2 CL21
167 CXCa CXCI
168 CNQ- CN01
169 CLDRP= CLORPI
170 CMOQP xCNOOP1
171 CMR . CmR1
172 CLZ) - CLO1
173 355 FXA - FXAl
174 FYA - FYAL
175 FZA wFZAl
L76 I(MXA a XHXAL
177 XMYA aXMYAl
178 XMZAs XMZAl
179 FTHX a FrHim
180 FT-iY FTHYI
181 FTHZ =FTHZI

182 GO TO(I43t543t643,343,57JhKK6
183 64 ZZI a UE -UE1
184 Ki4 -2
185 UE = UEl
166 -VEI = VE
187 PPI =SQRT(ABS(?(17#173)3
108 VE = VE +0.001
189 IF(PPI.GT..0011 VE =VE1 O .1*PPI
190 11= 16
191 'JI = 16
192 GO TO 144
193 44 L=VE-VEI
194 KK4 -3
195 WEI = WE
196 VE - VE1
197 P01 = SQR1l(ABStPfI8tL833)
L)8 WE - WE 4- 0.1
199 IF(PP1.Gr.0.i WE + 0.1*ppI
200 JI = 17
201 GO TO 144
202 45 ZZI = WE-WEI
203 KK4 =4
204 X6(3) XM3
205 WEaWE1
206 =P SQRT(ABS(P(21921)1l
207 XM3 X(3) +1.0
20i8 IF(PPI.GT.1.0 )X43) -X6(3) O.1*PPI
209 J1 x 18
210 GO TO 144
211 46 ZZ x X13)-X6(3?
212 KK4 -5

213 TH-ETAl a THETA

214 X(3) X6(3)

215 PP1 SQRT(ASS(PIZ5,25f)
216 THETA aTHETA + 0.01
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217D IF(PPL.GT.O.011TI-ETA aTHETAL* 0.1*PPI

21.9 KK6 u2

221 SOTO014f#
222 47 ZZI a THETA-THETAI
223 KK14=-6
224 THETA aTHETAI
225 PS11 PSI
226 PPI aSQRTCABS(P(279Z7)13
227 PSI a PSI + 0.01 P1 .*~
Z28 IF(PPI.GT.O.011 PSI *PI .*P

229 K(13 z6
230 iJ -25
231 GO TO 144
232 48 ZZI PSI-PSIL

*233 KI4 x7
234 PHIL. x PHI
235 Ps! = PS11
236 PPI z SQORT(ABStPC26,263)))
237 PHI = PHI + 0.01
238 IF(PPl.GT.0.01) PHI - PHIL *O.1*PP1
239 JI 27
240 GO TO 144
241 49 ZL= PHI-PH11
242 KK4 c6
243 PHI = PHIL
244 VVI(13 a VV(1I
245 'OP1 =SQQT(ABSIP(28,28l))

26 VV(1) xVV(l) 0 .1 
1

247 IF(PPl.GT.0.1 I VV(13=VVI1) O.1SPPI
248 (K5 w1
249 KK2 =2
250 KK16=z3
251 11 I
Z52 J1 x26
253 GO TO 144
254 50 ZZ1 VV(1l-VVI(11
255 <4 = 9
256 VV(1I =VVI(1)

257 VVI(2) =VV(2)
258 PPI vSQRr(A8S(P(29,29)fl
259 VV(2) = VV(2) + 0.1
200 IF(PPl.GT.0.1 I VV(2)-VVI12Z' 0.1SPPI
2fi1 11 2
262 Jl 28
203 GU TO 144
254 51 ZZU - VV(2)-VV1(21
265 KK4 -10
266 VV(2) a VV112I
267 VV1 13 = VV(3)
268 PPI = SQRT(ABS(P(30,30)1)
2o9 VV(3) - VV(3) + 0.1
270 IF(PPl.GT.0.1 VV(3)uVV1(31G 0.L*PPl

-- -d
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CARD
271 11 a3
272 1x29
273 GO TO 144
274 52 ZZL x VV(31-VVI(3)
275 KK4 = 11
276 VVIM4 - VV14)
277 VV(3) - VVII3)
278 PP1 a SoQRTAB$(P(3lt3l)ll
279 VV(4) - VV(4) + 0.1
280 IF(PPI.GT.O.1 I YVV41=VVI(414 O.1*PPI
281 11 *4
282 J1' 30
283 SOTO144
284 53 ZZI s VV( 41-VVI(4)
285 KK4 2 12
286 Pal - pB
287 VV(4) u VV1IM
288 PPI SQRT(ABS(P(22,2Z11)
289 PB PB + 0.01
290 IF(PPI.GT.0.01) PB a PB1 4 04*PPI
291 KK6 - 4
Z 92 WFI a WF
293 WFaP3*RTD
29(t JI a 31
295 30 TO 144
29b 54 ZZI a PB-P831
297 A2(22922) - (OPBI-DPB)/Ztl
298 A2423,22) - (OQBI-DQBI/lZl
299 A2(24t22) = (DR81-ORBI/ZZ1
300 IF(LAUNCH.GT.2) GO TO 92
301 AZ( 17,222 - IDVEI-OVE)/ZZI
302 A2(16,221 = (DEOI-DWEI/ZZI
303 92 K', 13
304 081 - Q8
305 P8 - Pal
306 WF -WFI
307 WQI a WO
308 PP1 - SQ~kT(ABSfP(23t23)I)
309 QB 08 4B 0.01
310 IF(PPI.GT.0.01) 08 w 081 4 .1*PPI
311 WO r QB*RTO
312 GO TO 355
313 55 ZZ1 - 06 Q81
314 A2(239231 (00Bl-OQBI/ZZI
315 A2(24,231 x (ORB1-ORB)/ZZI
316 IF(LAU'JCH.GT,2) GO TO 93
317 AZ(17,23) = (0Vi1-OVE)/ZZ
318 A2(18,23) - (OWE1-OWEI/2ZZ
319 93 Kf,4 a 14
3ZO R51 a RB
321 2B a 081
322 WQ = WOI
323 WRI a WR
324 PPI - SORTCABS(P(24,24f))
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*325 :tb RB O.O1
326 IFIPPL.GT.O.013 R8 P BI +O.1*PPI

327 lWR u RBORTO
328 GO0TO355
329 56 ZZI -PB RBI
330 A2(23,24) i= IBI-OQB)/zzi
331 A2(24,241 z (OqB1-ORBI/ZZL
332 IFfLAUNCH.GT.21 GO TO 94
333 A2(l7,24) = IOVEI-DVE)/ZZI
334 A2(18,241 w (OWEI-OWEIIZZ1
335 94 RB aRBL
336 WR - cA1
337 KKI( =1
338 KK3x0
339 KK5 -
340 <K6 -5
i41 GO TO 355

342 22 DUEI - BCSECr(IlD*BACS(1).BCSECS(l,2)*BACS(2)tBcSECS(1,3)*BACS(3,
343 OVEI BCSECS(2,1I*8ACS(13.8'SECS(2,23*8hCS(23+BCSECS(2.3)*BACS(3)
34,4 OWEL - BCSECSt3,1)*BACS(13+BCSECS(3,21*BACS(2)+BCSECS(3,31*BACS(3I

346 G0 TO (l1s04OJ

352 XMI XMZA-FYA*RDCG*XMLTII
353 -TMPL a (1.-X1X/XIY)OPS

2354 OPBI * X4X/XIX
355 DQ81 - XMY/XIY+TMPI*RB
35o 0081 - XMI/XIY-TMPL*QB
35? GO T1900,*911,LAUNCH
356 90 CALL MOERIV
359 91 GO TO (64944,45946,47,48,49,50,5l,52,53,54,55,50)KKA-
360 5T IF(LAUNCH*GT.2) GO 10 95
361 30 TO 96
362 95 TFIKG~o(EQ.1) GO TO 96
j63 KOK a
364 00 97 1.17.18
365 00 97 11=22,24
366 97 A211,12 3.0
36? 96 RE TURN
368 ENO
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CARD
I SUBROUTINE MDERIV
2 COMMON /TINES/TtOT #TBtJTSTOP9 IPRt JvLAUNCH4

4 1RLCGtRDCG
5 COMMON /FCMSNG/SI ,WOWFXX,XYRLCGOrOCGORDCPXMXF xXIY

7 comc.,4/rRANSF/eCSECSI3,3),ECSBCS(3,31,SCSGCS(3,3D ,ECSGCS(3,3)

aCONA21N /8LOCC1/DUE1 ,DVEI,OWEI ,DP81,OQB1tDRiI
9 DOUBLE PRECISION TOT
10 DIMENSION BACCM3
11 EQUIVALENCE (DVBBACC(2)3,(DWBBACC(33)
12 GO TO(30,5Oh9LAUNCH
13 30 RLCGI - RLCG
14 RLCG1 - RLCGO + ROCG
15 CALL TRANS(ECSBCSOUEIBACC)
16 THPL - RLCGI/XIY
17 TMP2 - X4*RLCG1
is TMP3 - TMP1*TI4P2 1.0
19 F'. ( - (OtB L*TMP 2-DVB* XMI/TMP3
20 FLZ - -CDQS1*TMP2 + OWBVXM)/TMP3
21 OVa - DVB FLY/XM
22 OWB - 0W3 FLI/XM

23 0081 - 0.0
24 0061 x 0081 + FLZ*TMPl
25 Oqbl ORBI-FLY*TMPI
26 CALL TRANS(BCSECSqBACCOUEl)
27 RETURN
28 50 CALL TRAS(ECSSCSPDUE1,BA;C)
29 OVB a 0.0
30 DW -0.0
31 DPBI a 0.0
32 DQff1 a 0.0
33 ORBI = 0.0
34 CALL TRANS(BCSECSvBACCv0UE1)
35 RETURN
36 END
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CARO
I SUBROUTINE COVAR
Z COMMON /VMG/ HtKS
3 COMMON /VMG3/CGNST19CONSTZ
4 '.0MMON /813CK1/P(33,33),DP(33t33),0P9(33,33)
5 COMMON /8LOCK2/ A2(33t331,KIK&(OUNrKICKKAkTBZ(Z1,K400
6 COMMON ISNSE/ AREA(31),EZNOISjEYNOtS
7 COMMON /VANEK /VGlklNvVLIMgVRL1!M
8 COMMON /TINES/TOTTBCTSTOPIPRJtLAUNCH
9 DOUBLE PRECISION TvoT

10 DIMENSION A3(15),P3115)
11 DO 25 I-1,MS
12 -Do 25 JJ- It
13 25 P(JJVII3 P(Ijj)f14 00 201 1=1,15

15 A3(11 0.0
$16 201 P31I) - 0.0

17 00 1 11=1,145
i8 OP(1,tI) = A(1,1)*P(1,I1)4A2(1,Z)SP2iZi)AZ(l,3)SP(3,!1)
19 1 OP(4,1i) - A2(4,4)l*P(4,II)4A2(4,5)*P15,I1)+A2t4,6)*P(6.1)
20 00 4 JIw1,MSv
21 OP(ZJ1) = AZ(2,1)*Pt1,JI)
22 OP(39JI) -AZ (3 ,2)*PI2,JI)
23 DPI 5tJt) a A2(594)*P(4,JI)
24 OP(6,j1) AZ(6,5)*P(5,JII
25 OP(79JI) 2 A2(7,7)*P(7,Jl)4.AZ(7,8)*P(B,jl)+A2(7,26)*P(26tJI)
26 OP(8,Ji) xA2(8t7)*P(7tJl)
27 OP(99JI) = AZ(997)*P(7,JI) +. A2(9,8)*P(8,Jl)4A219,26)*P(26,J!)
28 OP(11,JI) - A2(l1,10)*P(10,JI)

t29 4 DP(14,iI3 - A2(14,13)*P(l3,JI)
30 00 9 1 10,12,2
31 DO 9J A 1,14
32 9 OPtI,JI) =A2(I,2)*P(Z,9JI)tA2(1,3)*P(3,JI)+A2(1,5)*PI5,J)-A2(196I
33 1*P(6,JI )4A2(1I10)*P(10,JI)4A2(I,11)*P(111,Jfl4A2(I,23)*P(23,J1 )4
34 2A2(1,24)*P(24*JI)
35 00 10 1=13915t2
36 D0 10 JritMS
317 10 OP1IJI) =A2(1,2)*P(2,JIIeA2(13)*P(3,JI)tA2(1,5)bP(5,J]I+A2(h,6)

36 *P(6,J1 )*A2(I,13)*P(13,.1I)4A2(1,14)*P(14,JI).A2(I,23)*P(23,JI)
39 2+A2(1924)*P(24,JI)
40 JL v 16
41 JM *18
42 KIT a 0
4 3 17 D0 11 I=JL,JM
44 DO 12 JKxI,3
45 12 A3(JK) =AZ(IJKtISI
46 A3(41 A2(I,2l)
47 DO 13 JK-5tll
48 13 A3(JK) - A211,JK+201
49 001 L111m,MS
50 00 14 JKwl,3
51 14 P3(JK) aP(JK415,11)
52 P3(4) - P(21011)
53 00 15 JK-5#11
S4 15 P3(JK) *P(JK<-20,111
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CAQO
55 DP( 1,113 0.
56 *)0 11 JK4,.11
57 11 OP(19,11 = DP(It1I3 A3(JKlOP3tJKI
58 IF(KIT.EQ.11 GO TO 16
59 KIT =I

60 JLZ22

62 30 TO 17

63 L6 D0 18 Iz1,NS

D6O0 19 I-L#MS
6 19 DP(JK,11 = DD(JKI)4A2IJK,223*P(22,I),A2(J(923)*P(Z3,i4AZ'JK24)

69 11 a16
70 D0 20 JK-19921
71 DO 26 1,1MS
72 26 DP(JKtl) - A2(JKtII3*P(IliI
73 III+1
74 20 CONTINUE

00DO21 JK-25,27
76 00 21 1u1,HS

f77 DP(JK,1 - A2(JK,23)*P(23,1)4A2(JK,243*P(24,1134AZ(JK,263SP(26,13
7a DP126,i' =0P126,I)+A2(26,221*P(22, 134AZ(26,253*P(25,II
79 21 00(27,1 = DP(Z7,I3 + A2(27,25)*P(25,11
80 AL28
$1 Ji=12
82 0O 23 JK=28931
33 IF(JK.F.Q.303J1=12
a4. 00 27 IzlNS
d5 27 DP(JKtt3 = A2(JK,7D*P(7,I3.+A2~iJK,8)*P(8,I3..A2(JK,9I*P(9,I3 +
us 1AW(.K26)*P(26, 13+A2(JKJ13*P(JI,13.A2(JKJL3*P(JL,13
87 JI J14'1
se J I = Jjt3
09 23 CONTINUE
90 IF(LAUNCH.Gr.2)G0 TO 81
91 00 82 JK=17,18
92 00 82 1=1,MS
931 82 DD(JK,13=DP(JKI34A2(JK,2234PU(22,1 *A2(JK,23)*P(23,I) iA2(JK,241*

1; P(2491)
,Y5 81 0O099 1I=1,MS
96 DO 99 JJ=1,.NS
97 99 0P9(JJ,113 O D( 11,JJ)
98 DO 24 1I1,MS

99 00 24 .J=1IIl
100 24 DP(11,JJ) =DPIIiJJ)tDP9(1IJJ)
101 DP(l,1) 00D(1,1) + EZNOIS*02(13*82(l)
102 DP(4941 a DP(4,4) + EYNOIS*82(2)*82(2)
103 DP(28128) DPC28,28) + VGAIN*VGAIN*0.25
104 DP( 29,293 DP(29,29) + VGAIN*VGAIN*0.25
105 DP130t28) DP( 30,283 + VGAIN*VGAI'4*0.25
106 DP(30,303 = P(30,30) + VGAIN*VGAIN*0.25
L07 OP( 31,291 = P(3l,29) + VGAIN*VGAIN*0.25
10$) UP(31t3l) =DP(31,31) + VGAIN*VGAIN*0*25
109 DP(32,32) - EINOIS
110 DP(33#321 = 0.0
III DP( 33,333 EYNOIS
L1Z RETURN
113 END
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C ARD
1 SUBROUTINE SEEKER
2 C04MON / SEEKR/NSBTHTGBPS!GtBTIDBPSDEZEYOSVV(6I
3 COMMON / SEEKKI/SKSPSKSY,TSAMPOTSAMPC'IOSPTCROSTP,SYG8ISSZGSIS
4 CONMMON /TINES/TOTT80,TSTOP,IPRJLAUNCH
5 COMMON / INCEPT/UT(3),XT(3)tTMVELTMRNGE,UEPSZ,BEPSY
6 COMM4ON /ROTATE/ NR*PBQB9,RB, THETA, PN!,PS ItOP BiOQB, DRB, DTHA, DPH It
7 lDPSISNTHACSTHASNPHICSPHISNPSICSPSIWPtWQWRBTHETA,8PHtBPS
8 COMMON /JrILTY/GtRTO
9 COMMON /SNSEf AREAI3L),EZNOISEYNO!S,VBEPSVBEPSZtVBEPSY

laO'0MON /VNG9/JUNKVTIME1,VTIME2,VNOISDNUMMNOMNAL
11 DOJILE PRECISION T,DT
12 'ENTRY INSEEK
13 1 a IDINT(T*1.03+.5DO)

14 1 - MOD(!,501
15 IF(I.NE.O) RETURN
16 TMPI - T.4RNGE/32810.
17 TMP1 - .75*TMPL*TMP1
18 EL - DEAD(-TMP19TMPL, BEPSZI*SKSPI ~ ~~~~19 C *********S
20 IF(NOMNAL.EQ.O)GO TO 1
21 IF((T.LE.VTIMEl).OR.(T.GE.VTIMEZI)3 TO 1
22 V6EPS a VBEPSZ
23 CALL SNOISE(TMP1,BEPSZ,EZ,EZNOIS)
24 1 EY -DEAD(-THP~iTMPltBEPSY)*SKSY
25 C **********
26 IF(NOMNAL.EQ.0)GO TO 2
27 IFI(T.LE.VTIME1).OR.(T.GE.VTIM--2))3D TO 2
28 VBEPS -VBEPSY
29 CALL SNOISE(TMP1,BEPSYEYEYNOIS)
30 2 BTHTG - STHTG +DTSAMP*EZ
31 BPSIG - BPSIG +- OTSAMP*EY
32 RETURN
33 END

CARD
I FUNCTION DEA(PI,P2,X)
2 C
3 C DEAD SPACE
4 C

5 DEAD =0.0
6 IF(X.GT.PI. AtD. X.LT.P2)RETURN
7 DEAD - SIGN(1.OtX)
8 RETURN
9 END
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CAR.D
*I SUBROUTINE SNOISEITMPIBEPSECrSGSQ)

2 COMAON / SEEKK/SKSP ,SKSYTSAMPOTSAMPtCROSPTCROSTPSYGBISSZGIS
3 COMMON /UTILTY/GtRTD
4 COMMON /STATEV/NT9UEtVEWEX(3)
5 COM4MON /3LOCKI/P( 33,33) DP( 33,33)

*6 COMMON /tIMES/T
I COMMON /SNSE/ AREAt31)tEZNOIStEYNOIS9VBEPS
a C0'4MON /V4G9/JINKtVTIMEIVTIME2,VI4OISO
9 OOJBLE PttECISION T
10 SGTNPI - (O.75/(3281O.*3281Od)IbSQRr(10.O*P(19949)*Xc1)*K(LI
Li 1+3.0*P(19,19I*P(19,I9)41O.O*P(2O2OOX()l)C(2)
L2 2+3.0*P(20920)*P(20,201 *10.O*Pl2Iv2I)*X(31*C(3)
13 3+3.0*P(21,21)*P(21,21) + 2.0*9(I9,19)*Pf2O,28)
14 4+2.0*P(19*19)*P(2ht2l) + 2.O*P(20,20)*P(21,21) +4.0ES*P(L9,19t
15 5-8.0E4*P(l9,19)*XCI)l
16 SIGBEP -SQRT(VNOflSOSVNO1SD/(RTD*RTDItSGTMPk*SGTMP1,VBEPS*VBEPSI
17 IF(EC.NE.-SKSP) GO TO 21
18 01ST *-TMP1 - BEPS
19 POS D IST/SIGSEP
20 CALL DETARA (POSvALI)

Z. AL ~-AL14' 0.5
2a PUS P05 + 2.0*TMPI/SIGBEPj. I23 21 CALL DETARA (POSAOl)

25 AU a 1.0 -AL -AD-
26 30 TO 41

27 2 IF( EC .NE.O.O) G0 TO 22
28 DIST *BEPS + TMPI
29 P0US DIST/SIGBEP
30 CALL DETARA (9OSAOI)
31 AL -0.5 -AOI
32 P05 u(TMPl - BEPSI/SIGBEP
33 CALL E1F.TARA (POSAOZI
34 AUO .5 -A02

41 AU - AU1 + 05

P722 DST BEP P05 M

42 CALL OETARA (POStAU1)

44 AL - 1.0 - AU - AO
45 41 SIGEC - AL*(-SKSP) + AU*SKSP
46 SGSEC - (AU+AL)*SKSP*SKSP
47 SGSQ -SGSEC - SIGEC*SIGE'
48 WRITE(6,1)
49 1 FORMAT(lX,'TIME',T21,'SIGtEP'tT36,'EC',T51,'AL',T6B,'AO',TB1,

51 WRTE(6,2.TtSIG8EPECi,AA)AUSGECSGSQ
52 2 FORMAT( IX8EI5.51
53 WRITE(6,3)OP(1,1iDP(4t4)BEPS
54 3 FORMAT(1X,'0P(1,1) * *E15.5,0P(494) lt'E15.5,'BEPS 49*EI5.5)
55 PETURN

56 END
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CARD
1SUBROUTINE DETARA (POSAAA)
2 OMNON /SNSEf AREAi3llvEZNOISiEYNOIS

3 111 a0
4 00 23 1=1,30
5 441 (1-01/10.0

tp AA2 =0.1 + AAI
7 Ill III +
8 IFIPOS.GT.AA1.AND.POS.LE.AA2);U TO 24
9 23 CONTINUE

10 Ill1-31
IIt CORRCT - 0.0
112 'GO TO 25
113 24 CORRCT - 10.0*(POS-AAX1S(AREA(Ii-AREA111+1)

14 25 AAA -0.5-AREA( Illt + CORR:T
15 RETURN
16 END

6,
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CARDO
I SUBROUTINE VANEMO
2 C**
3 C THIS ROUTINE EVALUATES DERIVATIVES FOR INTEGRATION VARIABLES
4 C USED IN THE VANES MODULE.
5 C**
6 COMMON / AUTOP/NAt1PlZP2,ZP3,Zy1,ZYZZY3,Z1,IZR2,BPHIStZPIIZP12
7 1EODCR,~ll1ZYI2,EV,4CRZPO1,ZPDZZP33,ZYD1,ZY02,ZYD3,ZRD1,ZPDZt
8 2BPHISOZPIOIZPIOZEOOCRDZYIDIZYID2,EVNCROEZSSEYSSWOCWRCt
9 3EZqR#EYRR*BDELPC

10 COl4MON /VANES/NVtVV(4),OVV(4,oDEL(3)
11 COMMON /VANEK/VGAINVLIMtVRLIM
12 COMMON /3LOCK4/ VVS(419DLTC(4)
13 COMMON /BLIK2/ AVD(4),BVD(4)
14 'OMMON /MBLOK1/KOUNT1,XNORM(4)
15 DLTC(13 - EODC~.+BDELPC 4XNURM(U4O0.5
16 OLrc(2) - EVNCRtBDELPC + XNORM(23*O.5
17 DLTC(3) EeODCR-BDELPC 4XNORN(11*3).5
18 OLTC(4) x EVNCR-SOELPC + XNORM(2)*O.5
19 00 30 Iz1,4
20 VV5(II VV(I)
21 IND -
22 IF(ABS(VV(I)).LE.VLIM)GO TO LO
23 INDa 2
Z4 VV(1= XLINIT(VV(IhtVLIM)
25 10 DVV(I) - XLIMITtVGAIN*(DLTC(II-VV(I)),VRLIM)

z6 GO TO(30,203,IND
27 AVOII) - OVV(I
28 BVDI1) - DVV(T)*VV(I)
29 20 IF(DVV(I)*VV(Ih.GT.0.SDVV(I)=O.
30 30 CONTINUE
3L TMPI u VW(1[4VV(2)
32 TmP2 -VV(3)4VV(4)
33 DEL(I1) a 0.25*(TMPL*TMP2)
34 OELM3 - O.25*(TMPZ-TMPI
35 DEL(21 u .25*(VV12).VVC4)-VV(1)-VV(3))

36 IEURN
37 END
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CARD
I SUaROUTINE TARGET
2 C
3 C **THIS ROUTINE CALCUL.ATES TARGET/MISSILE RELATIVE POSITION AND
4 C * SPEED AND GENERATES LINE-OF-SIGHT SIGNALS IN SEEKER PLATFORM
5 C * COORDINATES

? COMM4ON / SEEKR / NSiVS(2)iDVS(2)#OSV(8)

8 C04MON /STATEV/MTUE(3)t X(3)#DUE(319DX(3)
9 COMMON / INCEPT/ UT(3)tXT(33,TMVELTMRNGEBEPSZ,8EPSY
10 COMMON /TRANSF/BCSECS(3,3),ECSBCS(3,3iBCSGCS(3,3I,ECSGCS(3,31
IL COMMON /UTILTYtGtRTD
12 COMMOJ /TIMES/T
13 C0'4MON IS4SE/ AREAC 311,EZNOISEYNOI SY8EPS,VBEPSZVBEPSY
14 COMMON /BLOCKI/P(33,33),DP(33t33)
15 COMMON /MBLOKI/KOUNTI#XNORM(4)
16 C04IMON /VMG9/JUNKVTIMElVTIME2,VNOISDNUMMtNONIAL
17 DIMENSION RMP131,SMP(31,TMP131
is DOUB5LE PRECISION T
19 EQUIVALE4CE (RXBA,RMP(lJI,(RYBA,RM'1(21h,(RZBA,RMP(3))
20 EQUIVALENCE (RXG,SMP(1)j,(RI'GtSMP(2I19iRZGS4P(3)I
21, A s0.0
22 B = 0.0
23 C=O .0
24 DO 10 1-1,3
25 SMPfI) - UT(II-UE(I)
26 TMP(I3 x T(I3-X(I)
27 RHP(I) = TMP(I)-SMP(I)
28 A - A+TMP(I)*TMP(I)
29 10 B cB..SMP(II*SHP(I)
30 TMRtNGE - SQRT(A)
31 TMVEL - SQRT(B)
32 COSA -0.
33 0O 20 1-10,3x
34 A z TMP(I2/TMRNGE
35 8 uSMP(I)/TMVEL
3b 20 COSA - COSA4.A*B
37 TMVEL s COSA*TMVEL
38 A - VS(1)/RTD
39 CStHG a COS(A)
40 SNTHG x SIN(A)
41 A xVS42)/RTD
42 CSPSG x COS (A)
43 SNPSG xSIN(A)
44 A aTM4P(L)*CSTHG-TMP(3)*SNT4G
45 RXG - A*CSPSG+TMP(2)*SNPSG
46, RYG - TMP(2)*CSPSG - A*SNPSG
47 RZG - TMP(31*CSTHG + TMP(1)*SNTPI43
48 BEPSZ aATANI-RZG/RXG) 4XNORM(31*V.4D1SD/RTO
4.9 BF.PSY a ATAN(RYG/RXG) *XNORM4(4)*VNOISD/RTO
50 C **********

51 IF(NOMNAL.EQ.OIGO TO 1
52 IFI(T.LE.VTIMEI).OR.(T.GE.VTIME2))GD TO I
53 C *~********
54 D x (1.+t-RZG/RXG)*(-RZG/RXG))**2
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CARD
55 E - (1.+( RYG/RXGooi RYG/RXGII**Z
56 F a RXG**4

)57 H a 1.0/1O*Fl
58 -11- 1.0/(E*F)
59 Q a(-T,4!)()*SNTHG-TNP(3I*CSTHG)*CSPSG
60 01 u (RXG*(THP(32*SNTHG-HP(I)*CSTHG),RZG*Q3/qT0
61 02aRXGOSNTHG-RZG*CSTHG*CSPSG
62 03 a -RZG*SNPSG
63 04 u RXGOCSTHG+RZG*SNTHG*CSPSG
64 25 aRZG*(-A *SNPSG4TNP(21*CSPSG)/RTO
65 RI - (RXG*(TNP(1)*SNTHG+TNP(3)*CSTHG3*SNPSG-RV3*Q3,RTD
66 R2 a RXGOCSTHG*SNPSG+ftYG*CSTHG*CSPSG
6? R3 41 -RXG*CSPSG.RYG*SNPSG
68 R4 s-RXG*SNTHG*SNPS G-RY G*SNTHG*CSPSG
69 Q5 =(RkXG* (-TMP(24*SNPSG-AOCSPSGa-RYG*(-A*SNPSG+TMP(23*C~ePSGIIRTD
TO VSEPSZ a H*(QI*g1*P(3Z,3)4+Q2*0Z*P( I9,l9)i03*Q3*P(20,201
71 l.Q4*Q4*PIZIZ1)4.05*05*P(33,3314-2.0*Q1*02*P(32,19I
72 2+2.0*1I*Q3*P(32Z0)2.O02*Q4P2l,9)2.*Q2t.Q5*P(33919
73 3+2.0*Q3*04*P(ZI,201+2.0*Q3*05*P433,ZOltZ.0*gQ4*Q5*P(33ZL).
74 42,0*Q1*Q5*P(33t32)4Z.0*Q2*Q3*P(20,19)4.Z.0*QI*Q4*P(32,21))
75 VBEPSY uHl*(R1*R1l*P(32,32)4.RZ*RZP(39,I9)+P.3*R3*P(20,20)
76 14R*R4*P(2121DR5*R5*P(33,33)+2.0*R1*R2*P(32191
77 Z4+Z:0*ft*R3*P(32920)20*R2*R4*P(21,19)+2.0*R2*RS*P(33,19)

19 42.(,*R*R5*PI33t32)2.0*R2*R3*P(20,19)+2.0*R1*R4*P(32,21U)
80 1 RETURN
a1 ENTRY INTGT
82 VS(l) ATAN(X(31-XT(3)I/XT(11I*RrD

83 VS(2) - 0.

85 EN0
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-' LAKU
I SUBROUTINE ROTAYM
2 C**
3 C THIS RJUINE CALCULATES 'cRIVATIVES FOR THE MISSILE ROTATIONAL
4 C VARIABLES PBQBvRB AIO. THE EULER L4GLES TN4ETAt PHII PSI.
5 C*.

b C0~4MON /POTAT ENR# PBiQB ,RBStTHETAt PHI , OP-?DOB PORBDTHA 90PHI
7 I,3PSI,SNTHACSTHASNPHItCSPHISNPSICSPSI%.j?i,.4r,BHETAtBPi,BPS
8 COMMON /TiMES/TOTT80,TSTOPIPPJLAUNCH
9 DOU.BLE PRECISION TpDT
10 COMMON /MSINCG/SlIWOWFtXIXOXIY0,RLCGOROCGOtRCGPtXNXXXlY,
IL LRLCGtROCG
12 -COMMON /FCEMOM/FXAFYAFZAXMXAXMYAXMZAFTHXITHYtFTHZ
13 C04MON /STATEV/NT,UEVEWEXyZOUEDVED4lEOXDYtDZ
14 COMMON IUTILTYIGiRTO
15 COMMON /GEOMK/StOXTCGYTCG.ZTCGRL1,PRL2,WUEtVhVEWWE
16 O0MMON /TRANSF/BCSECS(3t31,ECSBCSI3,3),ESCSGCS(3,3),ECSGCS(3,31
17 DIMENSION BACC(3)
18 EQUIVALENCE (OVB.8ACCfZI)q(DWBBACC(3)J
19 C
20 C *** MOMENTS OUE TO THRUST MISALIGNMENT
21 C
22 GO TO (1O,4Oh9J
23 10 XXXTH - FTHZ*YTCG-FTHY*ZTCG
24 XPIYTH xZTCG*FTHX+XTCG*FTHZ

z5 XMZTH - -YTCG*FTHX-XTCG*FTHY
26 C
27 C *STOTAL APPLIED MCMENTS
28 C
29 40 XMX a XMXA+XMXTH
30 XMY - XMYAFZA*ROCG*XMYTH
31 XMI w XMZA-FYA*ROCG+XMZTH
32 C
33 C * DERIVATIVES
34 C
35 TMPI = (1.-XIY,/XIY)*PB
36 (Iva* XMX 1'XIX
37 DUB XMYIXIY4.TMP1IRB

3q ORB =XMI/XIY-TMPI*QB

39 OT'4A =QB*CSPHI-RB*SNPHI

e.0 OPSI ( RB*CSPHI*QB*SNPHII/CSTHA
41 .)P-11 PB#-OPSI*SNTHA
42 p;P = PB*:tTO
it b' Q = Q87RTO
44 WR = RB*RTD
45 OPrl PHI*RTD

4#7 C * MO)IFY DERIVATIVES WHEN LAUNCHER DYNAMICS ARE IN EFFECT
46 C

#c Gd TO (50,30,20)LAUJCH
50 20 RETURN
51 30 RLCG =PLCGO+RDCG
52 CALL TRANS(ECSSCSDUEBACCI
53 TMPI- RLCG!XIY
54 TNP2 =Xfl*PLCG



CARD
55 1HP3 - TN4PI*TMPZ41.
56 FLY a £DRB*TNP2-oVB*XMI/THP3
57 FLZ a -I)QB*TMP2+DWB*XMI/THP3
51 ovas DVB*FLY/X4
59 DWB a OWBtFLZIXM
60 DP3 z..
61 DQB a Og8,FLZ*rMiPl
62 ORB a ORB-FLY*TMPI
63 CALL TRA4S(BCSECSBACCtDUE)
64 RETURN
65 50 'ALL TRANS(ECSSCS90UE9BACC)
66 .5Va -0.
67 OWB SO.
6d Opa M.
69 0Q3 0.
70 ORB -0.
71. CALL TRANS(BCSECStBACCDUE)
72 RETURN

t 73 ENdTRY ROTZER
74 Xl4XTH-x0.
75 XMYTH *0.
76 XMZTH -0.
77 RE7URN
78 END

CA2D
I. SU3R0UTIkE TRANS(TMTXvVECTOP.,RESULTi
2 DIMENSION T14TX(3,3)vE'CTOR(:I1,RESW.T(3)
3 RESULT(l) w TMTX(1,13*VECTORII),TMrX(1,ZI*VECTOR(2)4TNTXtl,3)*
4 IVECTOR(3)
5 RESULT(2) a TMTX(2,13*VECTORII)+TMTX(2,2)*VECTOR(2),TMTX(Z,3)*
6 IVECTOR(3)
7 RESULT(3) = TMTX(391)*VECTOR(L34-TMTX(3,Z3*VECTOR(21tTMTXC3,31*

0 IVECTUR(31
9 qETURN

LO END
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CMqO
I SUBROUTINE TRANSKt
2 C 9**
3 C THIS ROUrINE CALCULATES DERIVATIVES FOI THE TRANSLATIONAL
4 C EQUATIONS OF MISSILE MOTION, INCLUDING LAU'4CHEI DYNAMICS WHEN
5 C APPROPRIATE.
6 C ***
7 COMMON /STATEV/NT,UEVEWEvXYZOUEDVEDWEDKOYDL
a COMMON /ROTATE/NRPBQDRBTHETA,PHli PSItDP8,OQBDRB.OTHADPHI
9 1,DPSISN(HACSTHASNPHI ,CSPHItSNPSI ,CSPSI ,WFWQWRBTHETABPHBPS
10 COMM4ON /'jEOMK/SDXTCGtYTCGLTCGRL1,RL2,WUEtWVEWWE
ii Z;O4MON /M4SINCG/SIWOWPXIXOXIYQRLCGORDCGORDCGPXMXIXXIY,
12 1RLCGrDOCG
13 COMMON /FCEMOM/FXAFYAFZAXMXAXMYAPXMZAFTHX, FTHYFTHZ
14 C04MON /TRANSF/BCSECS3,3)tECS3CS(3,33,BCSGCS(3?31,ECSGCS(3t3I
15 COMMON /BLOt,6/ BACS(3)
16 COMMON /COEFS/THR ,AERC( 183
17 C04IMON /UTILTY/GPRTD
is COMMON / BLOCK7/KK39THRP9TIMP
19 C04MON /aLOCK8/KK1,KK5tVP
20 DIMENSION ANGLS(6)
21 EQUIVALENCE (ANGLS(I),PBI
22 C
Z3 C **CALCULATE EULER TRIGONOMETRICAL. TERMS
24 C
25 IF(KK1.EQ.O)GO TO 20
26 SNTHA aSIN(THETA)
27 CSTHA aCOS(THETA)
20 SNPHI u SI'4(PHIt
29 CSPHI zCOSfPHII

30 SNPSI - SINtPSIl
31 CSPSI - COSIPSI)
32 C
33 C **CALCULATE BODY/EARTH AND EARTH/BODY TRANSFORMATION MATRICES
34 C
35 TMP1 a SNPHI*SNTHA
36 TMPZ - CSPHI*SNTHA
37 BCSECS(Ltl) xCSPSISCSTHA
38 bCSECS(2,1) - SNPSI*CSTHA
39 BCSECS(3,1) -- SNTHA
40 BCSECS(1,23= CSPSI*TMPI-SNPSI*CSPHI
41 BCSECS(292)u SNPSI*TMPIfCSPSI*CSPHI
42 BCSECS(3t2)- CSTHA*SNPHI
4*3 6CSECSC1,33- CSPSI*TMP2tSNPSI*SNPHI
44 OCSECS(2t3)- SNPSI*TtIP2-CSPSI*SNPHI
45 BCSECS(393)- CSTHA*CSPHI
46 00 15 1-103
47 DO 15 K-193
43 ;5 ECSbCS(ItK)- BCSECS(KI)
49 C
50 C *eCALCULATE AERODYNAMIC FORCES AND MOMENTS
51 C
52 20 CALL AERODY
53 C
54 C * CALCULATE THRUST COMPONENTS

ft
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CARD
55 C
5b FTHX a TNR*COSAT
57 FTHY a T4P.*SATPHI
53 FTHZ - THR*SATCPH
59 C
60 C * CALCULATE BODY ACCELERATIONS EXCLUDING GRAVITY

b2 BACSIL) a (FTHX-FXA)/XM
o3 BACS(2) - (FTHY4FYA)/XN
61t BACS(31 u (FTHZ#FZA)/XM
65 IFIKK3.NE.O)RETURN
66 C
67 C €* TRANSFORM BODY ACCELERATIONS TO ECS AND CALCULATE DEIVATIVES
68 C
69 CALL TRA4S(BCSECStBACS9DUE)
10 OWE = OWE.G
I. DX = UE
72 DY VE
73 DZ =WE
14 RETURN
75 ENTRY INTRAN
76 C
77 C *** CALCULATE THRUST ANGLES AS SINES AND C[1SINES
78 C
79 I1P z SQRT(XTCG*XTC G4YTCS*YTC3 4ZTCG*ZTCG
63 COSAT * XTCG/TMPl
81 SATPHI = YTC /TMPI
12 SATCPH ZTCG/TMPI
33 C
d4 C *** CONVERT INITIAL VALUES TO RADIANS
d5 C
U6 DO 10 1I,6
d7 10 ANGLSMI - ANGLS(I)/fT0
d8 RETURN
d9 ENO
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CAD
I SUBROUTINE AUTOPT
20 C3'4MON / AUTOP/NAZPI,1P2,ZP3tZY1,LY2,Zy3,ZRIZR2,BPHTSLPI1,ZPT2,
3 LEODCRZYIILY1ZEVNCRLPD1,ZPD2,1P03,LYDIZYD2.ZYO3,ZROIZRD2,
4 2aPrTlSDPzPID1,ZP102,EaDCROtzYIDLtZY1O2tEVNCRDtEZsSEYSS,WQC,RC
5 3EZREYRRPSOELPC

6 COMMON / AUTOC/ WQGDQGTAUZ,TAUYTAULGYZtRAlrB82,WPI,DPI,RK,
I IPYAKIPYBKI,PYIKI,WQ1,OQLPYLIH,PLIMGBIASQBIASRBIAS
8 COMMON /SEEKR/ NSVS( 21 ,DVS( 2) OSVI 8)
9 COMMON /RUTATE/NRP8,Q8,R8,THEtAPH1,PSI,DP8,DQBORBDTHADPHI,

10 LDPSJtSNTHA 9CSTHA*SNP4I ,CSPI4I 9SNPSI,9CSPS t,WPto#Q#WRt 8THETA, SpHtBPS
A I LL C04IMON /BLIKI/BPHISN

12 EQUIVALENCE (EZ,OSV(11), (EY,OSV(211
13 C *** LIM4ITATION OF INTEGRATORS*
14 EODCR c XLIMIT(EODCRPYLIMI
15 EVNCR -XLIMITIEVNCRiPYLIM)
I o C **GUIDANCE FILTER - PITCH
17 ZPOI - GYZ*EZ-TAUZ*((3.*(ZPITAUZ*ZP2))4TAUZ*TAUZ*ZP3I
Lb1 ZPD2 - ZPI
19 ZP03 - ZP2
20 EZS , = TAUL*ZP3+LP2
21 C ** UOANCE FILTER - YAW 7

22 ZY01 - GYZ*EY-TAIJY*((3.*EZYItTAUY*ZIYZ))+TAUY*TAUYSZY3I
23 1Y02 ZYL
24 ZY3 Y2
25 EYS - AUL*ZY3*ZY2
26 rlQC u -LSS+QBIAS+GBIAS
27 WRC a EYSS + W8AS
28 WQ9IF - WQ -WQC
29 -WROIF - WR -WRC
30 EZRR x WQIF-WRDIF
3L EYRR aW DIF.WRDIF
32 C ROLL COMPENSATICNN
33 Zq)l WPI*(WPI*(dPu.-ZRZl-2.*DP1*ZRIJ
J4 ZRUZ aZRI
35 UPHISK = RK1*(l:R24((RA14RB21*ZRI4ZR0W/RA/R32l

3) BP.4ISD -XLID4ITf8PHISMRLIM)
31 BOELPC *0.1*IBPHIS +4. 0*8PHISO)
38 C * PITCH INTEGRATOR
39 ZPIDI aTNP7*ELRq - TMP2*ZPIL - TMPL*ZP12
Olt0 ZP102 xZPIl
41 EOL)CRD - TMP3*ZPI24TMP4*ZPII'-ZP101
42 C **YAol 14TEGRATJR*
43 ZYIDI - T14P7*EYRR - T14P2*ZYI1 - TMIP*ZY12
44 ZY102 s ZYIL
45 EVNCRD -THP3*ZY124TI4P4*ZYIL4ZYIOI
46 RETURN
47 ENTPY INALU T

8 TtPI a WQI*WQL
449 THi0 2 - 2.*OQI*WQI

50 THP3 u PYAKI*PYBKI
51 TMP4 x PYAKI4PYBKL4
52 T14P 5 x WQG*WQG

53 TMP6 w 2.*DQG*WQGf
54 TMP7 - PYIK1*WQI*WQI/T?4P3

55 RETURNJ
56 EN&I
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CAG 0
1 SUBROUTINE AERODY
2 C**
3 C THIS ROUTINE EVALUATES AERODYNftlKIC FORCES AND 40MENTS APPLIE3 TO
4 C THE MISSILEt USING COEFFICENTS AND DERIVATIVES OBTAINED By TABLE
5 C INTERPOLATION. FORCES AND MOMENTS ARE RETURNED IN COMMON BLOCK
6 C /FCEMOM/.
7 C*
8 COMMON /COEFS/FHRCM0,CNRCNPCY2tCL3tCXOCMO,:DCMtC~,CN2,
9 ICLPCLZCXCCNQCMDQPCLORPCMRCLD
10 COMMON /ADDV/ALFAPALFABETAXM4NCSPHIPSNPHIPQUEVARHO
11 COMMON /STAT EV/Nr,U E, VE9WEt XYt ZDUEOVE AOWE 9DX DYDZ
12 CO1MMON /TIMES/TDTTBOtTSTOPIPRJLAJNCH
13 CO'4MON /ROTATE/NP tPBOB, RBiTHETA tPri *PSI 9DPB, OQBORBv THAt OPHI
I1( I ops I shr HA CST HAt SNPHI iCSPHI #SNOSI ,CSP SIlPt WO, WRt BTHETABPHBPS

13 COMMON /GEOMK/SO,XTCG#YrCG .ZTCGRLliRLZWUEtWVEvWW E
L6 C0iMON /VA4ES/N VVVO(8) ,DELQOE LR #DELP
i7 COMMON /FCEMOM/ F.A*FY AtFZA, XMXAXMYA, XMZAPTHX, FTHYtFTHZ
is :34MON /TRANSF/BC SEC:S(3 t3) tECSSCS (3,93 ),BCSGCS (3 #3 ),ECSGCS (39,31
19 COMMON /BLOCK8/KK1,KK5,VP
20 DOUBLE PRECISION T. DT
21 DIMENSION OVEL(3),OUM(3)
22 EQJIVALENCE (UBBVEL(1) ),(VBBVEL( 2) )(WBBVEL( 3))

DIF(KK5.EQ.1)GO TO 30
24 OU4(1) = UE-WUE

45 U.M(2 ) = VE-WVE
26 OU4 3) = WE-WWE
27 CALL TRA4S(ECSBCSDUM,BVEL)
28 RHO Z.3138E-3#6.1844E-8*Z
29 VA = 1116.08#3.6292E-3*Z
30 TMP1 a VB*VB+Wit*WB
31 VP =UB*UB+TMP1
32 TMPI SORT(TMPl)
33 QUE D.5*RHO*VP
34 VP SQRT(VPJ
35 XM'J=VP/VA
36 ALFA = ATAN(WB/UB)
37 BETA - ATAN(VB/UBI
38 ALFAP x ATAN(TMP1IUB)
39 I F (TMPl.EQ-..GO TO 40
43'. CSPHIP -WB/TMPI
41 SNiPHIP = VB/TMPI
4.2 GO TO 50
43 40 CSPHIP - 1.
44 WNHIP = 0.
45 50 CONTINUE
46 GO TO (l120)9J
47 10 CALL OTLUX1
48 GO TO 30
49 20 CALL DrLUX2
.50 30 SN2PHI - 2.*SNPHIP*CSPHIP
s1 S.'40HI - 2.*SN2PHI*ICSPHIP-SNP41P)N(CSPHJP*SNPHIPI

52 SN2PHI aSN2PHt*SNZPHI
53 TMPI - OELR*CMR
54 TNP2 - OELQ*CMDQP
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55 IMP3 a TMPI*CSPHIP4TNPZSSNPHIP
56 T14P4 a THP2*CSPNIP-TMPI*SNPNIP
57 TM4Pl a CNP*SN4PHI.T14P3
58 TMP2 a CXOCiOCMOSN2PHI*TMP4
59 ^* CSPHIP*TMP2+SNPHIPSTMP1
60 CN a CSPHIP*TMPI-SNPHIP*TMP2
61 CL a CL2*SN4PHt*CL3*SNPHIP+DELP*CLO
62 XaCXO4CXC
63 THPI - OELRt*CLORP
64 TMP2 u DELQ*CNQ
65 TMP3 = TMPI*CSPHIPTMP2*SNPHIP
66 IMP4 a T14P2*CSPHIP-TMPISSNPHIP
67 TMPI a CY2*SN4PHItTNP3
68 TMPZ a CNF4CN2*SN2PHI+TNP4
59 CY , CSPHIP*TMPL-SNPHIP*rNP2
70 CZ a -CSPHIP*TiNP2-SNPHIP*TMP1
71 TNPI - QUE*S
72 FXA a TNPISCX
73 FYA a TMPl*CY
74 FZA - TNPISCL
75 THPI a TMPJ*0
76 THP2 a 0.5*D/VP
77 XNXA a TMPI*ICLWP*TMP2*CLP)
78 X#4YA* TMP1*fCM+WQ*rMP2*CMg)
79 XMIA a 714PI*fCNWgt*TMP2*CNRI
80 RETURN
81 END
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IA~ SUBPOUTINE OTLUX1
2 C ***
3 C THIS ROUTINE OBTAINS TH4RUST AND AERODYNAMIC C3EFFICIENTS AND
4 C DERIVATIVES FROM TABLE INTERPOLATION. TABJLATEO FUNCTIONS ARE
5 C HELD IN BLANK COMMON AND ROUTINE INTRP3 IS CALLED TO PERFORM THE
6 C ACTUAL INTERPOLATION. RESULTS ARE RETURNED IN COMMON BLOCK /COEFS/
7 C**
8 COMMON /AODV/ALFAP.ALFABETAXMNNCSPHIPSNPHIPQUEVSSR40
9 COMMON /TIMES/T

LO COMMON /VANES/SKPL( 9) ,OELQ90E4.ROELP
11 COMMNON /COEFS/TH4RCMQCNP.CNPCY2tCL3,CXOCM0:O^.MCtCN2,CLPCL2
12 lCXCiCNOtCMDQP9,CLORPtCMRiCLO
13 COMMO4 /UTILTY/GRTD
1't OOJBLE PRECISION T
15 DIMENSION ONEDMI4), TWOOMI(N
16 EQUIVALE4,CE (ONEDM(l1)CNPhj(TWOM(11,CMO)
17 TI - SNGL(TD
18 IFETL.GT.*14)GO TO 10
19 CALL INTRP3(tl*0.90.,1,THRI
20 30OTO 20
21 10 CALL INTRP3(T1,O.,0.i2tTHR)

23 ENTRY DTLUX2

28 OR - ASDEIR)
29 *CALL INTRP3(ALF,0.t0.,3,CIQ)
30 CALL I4TRP3(BET,0.,O.,3,CNR)
31 00 30 1=496
32 30 :ALL INTRP34ALFPtO.90.9ItONEDM(I-3fl
33 CALL INTRP3(XMNvO.i0.t?,CXO)
34~ DO 40 1.8,14
35 40 CALL INTRP3(ALFPXMN,0.,I,TWODM(I-TJ)

36 CALL INTRP3(ALFP*XMNQ,15,CNQI
37 CALL INTRP3(ALFPtXMN,ORtl5,CLDRP)
38 CALL INTRP3(ALFPtXMNDQ,169CMDQPI

39 CALL INTRP3(ALFPXMNs0R,169CMRI '
40 CALL INTRP31ALFPXMN,ABS(DELP) illCLO)
41 RETURN

l2 END
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I SUBROUtINE THRCCN

3 C THIS ROUTINE CALCULATES MISSILE 14A5 INERTIAS AND CG POSITION
ft C AS A FUN:TTON OF ENGINE THRUST CONDITIONS. THE INTEGRAL OF THE
5 C THRUST IS CALCULATED BY THE TRAPEZOIDAL RULE TO OBTAIN ENGINE
6 C IMPULSE.
7 C4
6 CO'4NDN /CDEFS/THRtAERC(181
9 COMMON /M4SINCG/SlIWOUPXIXDXIYCRLCGORO)CGORDCGPXMXIXXiY,

t0 1RLCG,RDCG
11 COM4MON /TIMES/TCTTBOTSTOPIPRJLAUNCH
12 -COMMON IUTILTY/GRTD
13 COMMON / BLDCK7/KK3,THPPTlMP
14 DOUBSLE PRECISION T,DT
15 T114P a TIMP+.5*(T-TPR)*(THR+THRP)
16 THRP a THR

17 TPR - TI PS

19 XM a IWO-DELWI/G
20 TMPI w I.-DELW/WO

zi XIX a XIXO*TMPl
22 XIY - X.YO*TMPI
23 kDCG u ROCG0-DELW*CGSHWP
24 RETURN
25 ENrRYINTHRCI 26 C
27 C J* ERO STARTING VALUES 'F THRUST INTEGRAL AND TIME
28 c
29 TIMP u 0
30 TPR no.
31 TIIRP a 0.
3Z C3SHWP CRDCGO-RDCGPI/WP

34 -EN:)
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I SUBROUTINE INTRP3(XtYZItFXYZ)
2 C ***
3 C THIS ROUTINE PERFORMS LINEAR INTERPOLATION IN TABULATED FUNCTIONS
4 C OF It 2 OR 3 INDEPENDENT VARIABLES. THE FUNTIONS MUST BE
5 C TABULATED FOR VALUES OF INDEPENDENT VARIABLES 4HICH START AT ZERO
6 C AND INCREASE WITH CONSTA;,T INTERVALS. THE TAaLES USED ARE DEFINED
7 C FOR POSITIVE RANGES OF INDEPENDENT VARIABLES BUT IF REQUIIED
8 C THE VARIABLE INCREMENT NAY BE NEGATIVE.
9 C ***

10 COMMON DXDYOZ(6O)IADD12DIAERO(1360)
11 J 3*1-2
12 DX = DXOYOZ(J)
13 DY v DXCYDZ(J I)
14 OZ - DXDYDZ(J2)
15 J IFIX(X/OX)
16 DELX x X/DX-FLOAT(J)
IT IF (UY.EQ.OD.)GO TO 40
18 IF IJ.GT.16)J=16
19 K - IFIX(Y/DY)
20 UELY - Y/DY-FLOAT(K)

21 IF IK.GTS.)Ka4
22 IF IDL.EQ.O.0GO TO 50
23 L s IFIXIZ/DZ)

24 UELL v Z/Z-FLOAT(L)
75 IF (L.GT.4)L=4
26 M = J 16*K64*LIADDII)
27 N- I
28 4N - 2
29 GO TO 30
30 10 N m M+64

31 N 2
32 FXYI x FXY
33 GO TO 30
34 20 FXYZ = ?XYI.IFXY-FXYI)*DELZ
35 RETURN
36 40 M u J IADO(I)
37 N x1
38 GO TO 30
39 50 N a Jb16*KIADqDII)
40 NN - 2
4L N - 3
42 50 TO 30

43 60 FXYZ u FXI
44,. RETURN
45 70 FXYZ a FXY

46 RETURN
4? D FXI a AERO(M)+(AERO(M+I)-AEROINI3*DELX

48 GO TO(60t8O)tNN
49 80 M 2 M+16
50 FX2 - AEROIN)*(AERO(M4I)-AERO(N)I*DELX
51 x N -16

52 FXY a FXI+(FX2-FXI)*DELY
53 GO TO(1,2070N
54 END
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CIt SUOROUTINE PROATA
a COMMON ISEEKR/ NSVS12),OVS(abOSVfI)
3 C0440O4 /INiES/TDTTSOTSTOPtPRJLAUNCN
4 OOUBLE PRECISION TOT
5 COMMON /GNTRL/UUMf*IOATAI641
6 COMMON /AUT0P/NAvVAfl5JvOVAflS),OVI7)
7 COMMON /VANES/iIVvVVI4),OVVI41,O1Lf3)
a C04MON /ROTATE/NRPB,QBRSTHETAP11 ,P51,DP5,DQSORSOTNAOPHI
9 It OPSI,#SNTHA, CST HAqSNPHI sCS PHI,9SNPSIvCSP $ItWPt W3,WNTAS% PH98PS

10 COMMON /STAkTEV/NTUEVEWEXYZOUEOVEOWEOXOYOZ
it C04IMON /AOOV/ALFAPALFABETAXMNCSPMIPSNPHIPGUEoVSMQ
12 COMMON /COEFS/THRAERkC(181
13 COMMON IGEOMK/S,0,XTCGYTCGZTC6,RkLLRL2,WUEtWVEWWE
14 COM4MON /14S!NCG/SilWOtWFXIX0,XIY0,RLCGORkO'GORCGPXMtIlXXIY,
I5 LRLCGtROCG
16 C04MON /FCE40M/FXAFYAPZAXNXAXMYAXMLAFTMXFTHYFTHZ
I? COMMON IINCEPT/ UT(3),XT(3),VMVELTMRNGESEPSlDEPSY
Id COMMON IAUTOK/ WQGOQGTAULTAUVTAULGYZRA1,R52,WP1,DPLRK1,
19 IPYAK1,PY8KLPYIK1,WQ1,0O1,PYLUMRLIMGSIA5,QBZASRBIAS
20 COMMION /UTILTY/GPRTO
21 D14ENSIUN RORV(6)t DORV(6)
22 EQUIVALE'4CE (RD-lV(I)#OPBl
23 ST14ETA aTHETA*RTD
24 BPS a PSI*RTO
25 GO TO(409S0,bO),ISW
26 40 RETURN
27 50 oiRITE( 6,930) rUEVEtWEXYZMPWQWRBTHETkbPMSPSUtXT,
28 1 EM4RNGErtMVEL9VS
29 LINES a LINES*3
30 IF(LI'4ES *LT. 52) IETURN
31 LINES a I
32 IPAGE a IPAGEf-I
33 WRITE ( 6,940) IFAGE
34 PETURN
35 60 CONTINUE
36 CONTINUE
37 IPAGE uIPAGE4I
38 WRITE I6,9401 IPAs;E
39 ALFAP a ALFAP*RTO
40 ALFA a ALFA*RTO '

41 BETA a BETAsRTO
42 CSPHIP a ATAN2(SNPHIPCSPHIPI'RTO
43 00 70 t'I,6
44 70 UDRVII) m RDRV(I)*RTO
45 WRITE( 6,950) TUEVEWEXYZ,0U'.:OVEOWEDX,0YOZ
46 WRITE( 6,960) WPiWQWR9BTHETAvBPH,5i'S-DORV
47 WRITE( 6,9701 VSOVS
48 WRI TE( 6,980) VA,0VA
49 WPITEI 6,990) VVOVV
50 WRITE( 6,10001 OELBEPSLBJEPSYUSVOV
51 wRITEI 6,10101 XMNtVSSRhO, QUE,9ALFAP,9ALFAt BET AtCS PNIPAERCt
52 1 FXAFYAtFLA,X4XAXMYAXML4
53 WRITEt 6,1020) FTHXtFTHYtFTHZXMXIX#XfYtROCG

54 WRITE( 6,10301 UT#XTtTMRNGEtTMVEL
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C ARD
55 RETURN
56 ENTRY PRHEAD
57 WRITEI 6,0001 IOATA(IliI1,20)
58 WRITE( 6t9201 SDRLlRL2,WOWFXIXOXIYORDCGORDCGPQB!AS,
59 IRS IASt XTCG, YTCG*ZTCGgWUEWVEtWWEiRLCGOt SI DT
60 LINES a 40
61 IPAGE - 1
62 IF (IPR1IO,20,30
63 10 ISW u3
64 IPR u -IPR
65 RETURN
66 20 SW aI
6? RETURN
68 30 ISW -2
69 WRITE( 6,0103
70 RETURN
71 903 FQRMAT(lH1,120XttPAGE Il'/48X,'TERI4INAL HOMING SIMULATION IDIGITAL
72 l', /48X,36('-'l , //20X,20A4 //
73 910 FQRMAT(//25X,'RESA.TS ROW 1:', /30Xt'COLUMN I TIME IN SECONDS',
74 125XtlCOLUMN 2 UE IN FT/SEC', /30X,'COLUMN 3 VE IN FT/SEC',28X,
75 2'COLUMN 4*WE IN FT/SEC', /30X,'COLUMN 5 MISSILE X COORD IN Fr,,

7u 319X,'COLUJMN 6 MISSILE Y COORD IN FT't f30XtoCOLUMN ? MISSILE I
77 4COORD IN FT', 19Xt' COLUMN 8 ROLL RATE IN DEG/SEC', /30X,'C0LU4'4 9
79 PIT'CHLM RA1HT A IN DEGREES', L9X XOLUNN 10 2 PHIRAT IN DEGEES' /
79 PXICHLM 11HTE DEG/SEC', 24XXOLUMN 10 YA HRA I IN DEGSE'0
eo 730X9'COLUMN 13 PSI IN DEGREES', 1/25Xt,'RESJLTS.ROW 2:', /30Xt
81 8'COLUMN 2 TAPGET U IN FT/SEC', 21y,'COLUMN 3 TARGET V IN FY/SEC'
82 9v /30Xt'COLUMN 4 TARGET W IN FT/SEC', 21XtOCOLUMN 5 TARGET X COORD
83 AID IN FT',/30K,'COLUMN 6 TARGET Y COORD IN FTt 19Xt'COLJM4 7 TA
84 ORGET Z COORD IN FT', /30X,'COLUMN 8 MISSILE/TARGET RANGE IN FT',
as C13Xt'COLUMN 9 MISSILE/TARGET CL3SI4G SPEED IN FT/SEC', /30Xv'C3LU

S86 OMN 10 GIMBAL ANGLE THETAG IN DEGREES' , 9X9'C.OLUMN 11 GIMBAL ANGLE
b7 EPSIG IN DEGREES')
130 920 FORMAT 15Xt'VEHIZLE DETAILS:', //10XREFERENCE AREA', I5XtF8.3t
99 1' SO FT', 2QX9'REF~kEN:E LENGTH', 12XtF8.3# I FT', /LOXt'FPONT LUG
90 2 LAUNCHER TRAVEL' 94XtFa.31 'FT',23X# 'REAR LUG LAUN4CHER TRAVEL', 4Xt
91 3F6.3v ' FT'*/1OX9'INITIAL TOTAL INEIGHT', 9XtF8.2, ' LbStv 22X9

92 4'PRUPELLANF WEIGHI', I0XtF8.29 ' LBS',/lOX9'INITIAL X MOM* OF toot
93 5 9XtF8.3t ' SLUGS FT**2', 14Xt' INtrIAL Y N34. 3F .1.49 8X9FS.3, I
94 6' SLUGS FT**21t /IOX9'CG TOTAL SHIFT' ,15XvF8.3t ' FT', 23Xt
95 7'PROPELLANT CG TO COO', 8X9F8.39 ' FT', /10X9'AUTOPILOT Q BIAS',
96 8L3XF8.3t ' DEG/SEC't 18X,' AUTOPILOT R BIAS', 12X9F8.3t ' DEG/SEC'
97 9/10XI'THRUST POINT OFFSETS iXtYiZ FT3',10Xv3Fl0.2t/IOXi'WINO SPEED
98 A COMPGNENTS (XEtYCiZE F/Sl', 5Xt3Fl0.1t /l0X9'REAR LUG TO CGOIFT)'
99 B,22XFlO.3,/10Xv'ENGINE SPECIFIC IMPULSE', 6XtF8.3i I SECS', 21X,

1O0 C 'INTEGRATION STEP LENGTH', 5XtF8.49 ' SECS')

101 930 FORMAT (/3XtF6.39 2(3F10.2, 3F10.11,/9X,3FI0.2. 4FI0.1, 3F10.21
102 940 FORMAT(liL,30X,'TERMINAL HOMING CONTO o...It 51X,'PAGE't 13)
103 950 FORMAT (// 10Xt'TIME',F8.3t ' SECONDS', //5X#'TRANSLATION VARIAS
104 ILES IN F/SEC AND FT', 12Xt3F10.2, 3FI0.1, /5X,'TRANSLATION DERIVAT
1.05 21VES IN F/SEC**2 AND F/SEC', 5Xt3F10.3, 3F10.2)
106, 960 FORMAT 4/5XROTATION VARIABLES IN DEG/SEC AND DEGS', 11X96FI0.29
107 1/5Xt'ROTATION DERIVATIVES IN DEG/SEC**2 AND DEG/SEC', 4Xt6F10.31
108 970 FORMAT (/5Xv'SEEKER VARIABLES IN 020 AND OEG/SEC', 15X92F10.3t/5X,
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109 1 $SEEKER DERIVATIVES IN OEGISEC AND0 DEG/SECO*2', BXZPIO.31
110 980 FORMAT (/5X9'AUTOPILOT VARIABLES IN DEG ETC', 20X96FI0.39 /55X9
L11 1 6FI0.39 /55XTPIO.3t /5X,'AUTOPILOT DERIVATIVES IN DEG ETC*# LSXt
112 26FI0.39 /55X90F10.3, /55Xt7IO.3)
113 990 FORMAT (/5XvlVANE VARIABLES IN DEGREES', 2SX,4FI0.3, /5X,
114 1 $VANE OEI VATIVES IN DEGISEC', 23X,4F10.3)
L15 1000 FURMAT (/,X,'DELQOELRt DELP (DECREES)'9, IlK, 3F8. 3, 1IX,'SEP St t SEP
116 1Vc(OEGS)', 2X,2F8.3 9/5W, SEEKER ADDITIONAL VARIABLES', 4Xv8FI0.3
117 Z,//5X,'AUTOPILDT ADDITIONAL VAOIABLEF', IOX,?FIO.3)
118 1010 FORMAT 4/5X9'MACH NO', F9.2, 4XSONIC SP', F8.1, 4X,'A!:t DENS',

120 2/5X tBETAt, ORES, PLO.4.P19FI.3/ KX9A 'C0NAM:;' COEFFCIEN

12 4%K,'lCYZ(&)', FIC-4, 4Xt':L3(Al', F10.4, 4XCAD(Ml', F10.4, foXISXt
123 5'CM4O(AtM)'. F8.49 4X,'COCM(AtM)'v P7.4, 4X9'CNF(AtM)', F8.49 4X,
124 6'CNZ(AtM)', Fe.4t 4Xt'CLP(AvM)'t F8.4, 4X,'CL2IAtM)', F8.4, /5X9
L25 7'CXC(AM)lv F8.4, 4X,'CNQ(ArM9Q)', F6.4t 4X9'CNDQP(3V)', F?.I#, 4X,
126 8'CLORP(3V)', F7.4,4X,'CMP(AMtR)', F6.4t 4Xt'CLC(A,MtPI', F6.49
127 9// 5XAERODYNAMIC FORCES ANO MOI4ENTS',/5X,'FXAILBI', F9.2, 4X,
128 A'FYA(LB)', P9.2, 4Xt'FZA(LB)'i F9.2, 4X*'MXA(L3FT)'t F7.2, 4K,
129 S'MYA(LBFT)', F7.2, 4Xt'MZA(LBFT)'* F7.21
130 1020 FURNAT (/SX,'THRUST COMPONENTS IXYtZ LBOP, 3F8.1* 4Xt'MASS', F8.2
131 1, 4XX M. OF 1,1, F8,2, 4X,'Y N., 3F I.0, FI.3t,5Xt'CG SHIFT', a20X,
132 2 F8.31
133 1030 FORMAT (/5X,'TARGET SOEEO (XYZ PT/SEC)' , 3F8.L, 4X,'TARGET POSIT
13'4 110N (XYL FT)',3FI0.1,/5Xt'TARIGET/MISSILE RAN3E (PT)', FIO.1,ZOX9
135 2 'CLOSING SPEED tF/SI', 9XF8.l)
136 END
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CARD
1 3. 3. 0. 0.05 0. 0. 0. 0.
2 373. 1* 15. 15 2. 6750. 12. 60.
3 130. .53 .33 40. 15. 2.l 115, .64
4 15. 7. 1. 0O 0. 0. 0. 0.
5 .1 0. 0, 5 0O 0. o. 0.
6 -40. ,267 5864 2.75 00 0. 3*5 6.07
7 0. 0. 0. 195.6 12l. 19.4 4201 15.11'
8 2.54 -.375 -.15 15. 20. 200,
9 0.50 0.4602 0.4207 0.3821 0.3446 0.3015 0.2743 0.2420 02&J9 0.1041

10 0.1587 0.1357 0.1151 0.0968 0,0808 0.0666 0.0548 0.0446 0.0359 0.0267
11 0.0228 0.0179 0.0139 0.0107 0,00620 0.00621 0.00446 0.00347 0.00256 0.00116
12 a .02 T4RUST TABLE I FOR TIME 0 TO *14 SICS
13 0.5 2050. 2660. 2240. 2230. 2205. 2160, 21700
14 48 01 THRUST TABLE 2 FOR TIME FRO4 .14 SECS
15 0.5 2205. 2160. 2140. 2125. 2110. 2095. 2075.
16 2060. 2040. 2020. 2005. 1990. 1970. 19500 1910.
17 1800. 1200. 610. 420. 320. 295, 220. 190.
18 140. 120. 100. 90. 60, 75. 650 550
19 48. 41. 35. 30. 20. 10. 0,

* t 20
2i 16 2. TABLE OF RATE DAMPING OERIVATIVS CMQ
22 -4.1 -5.25 -. 3 -7.4 -8.4 -9.3 -9.96 -10.45
23 -10.78 -10.95 -11.0 -11.0 -11.0 p11,0 -11.0 -11.0
24 1 2. OEP.TA C4 PRIME
25 0. .05 .18 .4 .69 1.06 I'5 2.01
26 2.59 3.22 3.86 4.73 4.73 4.73  4.75 4.7

V 27 16 2. DELTA CY PRIME
28 0 -.015 -.07 -.17 -.3 -.47 -.65 -. 47
29 -1.1 -1.345 -1.6 -1.86 -1,86 -1.6 -1.86 -1.86
30 16 2. DELTA CL PkINE LUGS
31 0. .015 .C25 .032 .045 4051 006 .11
32 f145 .181 .215 .255 .255 .255 .255 .255
33 16 .0916667 CXO PRIME
34 .465 .445 .43 .411 .397 .387 .379 .375
35 .420 .558 .730 .970 1.2 1.2 1.2 102
36 16 4 2. .366667 CMO PRIME
37 0. -.95 -2.1 -3.6 -5.2 -7.2 -9.3 -11.35
38 -13.8 -16.2 -18.55 -21.1 -21.1 -21.1 -21.1 -21.1
39 0. -.95 -2.1 -3.6 -5.2 -?.2 -9.5 -11.55
40 -13.8 -16.2 -18.55 -21.1 -21.1 -21.1 -21.1 -21.1
41 0. -.95 -2.1 -3.6 -5.2 -7.2 -9.3 -11.55
42 -13.8 -16.2 -18.55 -21.1 -21.1 -21.1 -21.1 -21.1
43 0. -.6 -1.6 -3.1 -4.75 -6.7 -8.8 -10.95
44 -13.2 -15.5 -17.8 -20.2 -20.2 -20.2 -20.2 -20.2
45 16 4 2. .366667 DELTA CM PRIME
46 0. -.03 -.14 -.3 -.64 -1.19 -1.85 -2.63
47 -3.46 -4.36 -5.38 -6.45 -6t45 -S.45 -6.45 -6.45
48 0. -.03 -. 14 -.3 -.64 -1.19 -L.65 -2.63
49 -3.46 -4.36 -5.38 -6.45 -6.45 -6.45 -6,45 -6.45 4
50 0. -.03 -.14 -.3 -. 64 -1.19 -1.85 -2.63

51 -3.46 -4.36 -5.38 -6.45 -6.45 -6.45 -6.45 -6.45
52 0. -.05 -.17 -. 4 -.75 -1.32 -2.02 -2.8
53 -3.68 -4.6 -5.65 -6.8 -6.8 -6.8 -68 -6.8
54 16 4 2. .366667 CN PRIME

N3

.I
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55 0. .69 174 2.2 3.15 4.24 5.38 6.54
56 7.72 9.04 10.55 12.2 12.2 12.2 12.2 12.2
57 0. ,69 1.4 2.2 3.15 4.24 5.38 6.54

58 7.72 9.04 10.55 12.2 12.2 12.2 12.2 12.2

59 0. .69 1.4 2.2 3.15 4.24 5.38 6.54

60 7.72 9.04 10.55 12.2 12.2 12.2 12.2 12.2

61 0. .69 1.4 2.2 3.2 4.35 5.5 6.74

62 8.0 9.37 10.7 12.0 12. 12. 12. 12.

63 16 4 2. .366667 DELTA CH PUIME

64 0- .015 .06 .155 .31 .5 .75 1.05

65 1.395 1.78 2.2 2.63 2.63 2.63 2.63 2.63

66 0. .0.5 .06 .155 .31 .5 .75 1.05

67 1.395 1.78 2.2 2.63 2.63 2.63 2.63 2.63

68 0. 4315 .06 .155 .31 .5 .75 1.05

69 1.395 1.78 2.2 2.63 2.63 2.63 2.63 2.63
70 0. .015 .06 .155 .32 .53 .8 1.11

71 1.46 1.84 2.26 2.71 2.71 2.71 2.71 2.71

72 16 4 2. .366667 ROLL DAMPING CLP

73 -.232 -. 315 -. 39 -. 464 -. 527 -.579 -.62 -.649

74 -.668 -.675 -.67 -. 645 -.645 -. 645 -.645 -.645

75 -. 232 -. 315 -. 39 -.464 -.527 -.579 -.62 -. 649

76 -.668 -. 675 -. 67 -. 645 -.645 -.645 -.645 -.645

77 -.232 -.315 -.39 -.464 -.527 -. 579 -.62 -. 649

78 -. 668 -.675 -. 67 -.645 -.645 -.645 -.645 -. 645

79 -. 25 -.333 -.41 -.482 -.55 -. 609 -. 657 -. 698

80 -.728 -.75 -.72 -.72 -.72 -. 72 -. 72 -. 72

81 16 4 2. .366667 DELTA CLP ORIME

82 C. .007 .02 .045 .07 .101 .122 .193

83 .25 .297 .331 .354 .354 .354 .354 .354

84 0. .007 .02 .045 .07 .101 .122 .193

85 .25 .297 .331 .354 .354 .354 .354 .354

86 0. .007 .02 .045 .07 .101 .122 .193

87 .25 .297 .331 .354 .354 .354 .354 .354

88 0. .008 .035 .07 .12 .186 .277 .387

89 .515 .672 .84 1.03 1.03 1.03 1.03 1.03

90, 15 4 2. .366667 CXC

91 0. 0. 0. 0. .002 .02 .055 .13

92 .24 .387 .642 1.CQ 1.09 1.09 1.09 1.09

93 0. 0. 0. 0. .002 .02. .055 .13

94 .24 .387 .642 1.09 1.09 1.09 1.09 1.09

95 0. 0. 0. 0. .002 .02 .055 .13

96 .24 .387 .642 1.09 1.09 1.09 1.09 1.09

97 0. 0. 0. 0. .002 .008 .026 .07

98 .135 .23 .365 .56 .56 .56 .56 .56

99 16 4 4 2. .366667 10. CN PRI14E PER DELTA R OR 0

100 .143 .1425 .145 .151 .157 .162 .166 .1735

101 .182 .1867 .1895 .191 .191 .191 .191 .191

102 .143 .1425 .145 .151 .157 .162 .166 .1735

103 .182 .1867 .1895 .191 .191 .191 .191 .191

104 .143 .1425 .145 .151 .157 .162 .166 .1735

105 .182 .1867 .1895 .191 .19i .191 .191 .191

106 .179 .1795 .1825 .188 .196 .203 ..210 .217

107 .227 .231 .232 .232 .232 .232 .232 .23?

108 .143 .1425 .145 .151 .157 .162 .166 .1735



_____ ___ _~_ l- -

183

CARD
109 .182 .186 .1895 .191 .191 .191 .191 .191

110 .143 .L425 .145 .151 .157 .162 .166 .1735

III .182 .1867 .1895 .191 .191 .191 191 .191

112 .143 .1425 .145 .151 .157 .162 .166 .1735

113 .182 .1867 .1895 .191 .191 .191 .191 .191

114 .179 .1795 .1825 .188 .196 .203 .210 .217

115 .227 .231 .232 .232 .232 .232 .232 .232

116 .175 .169 .171 .176 .184 .192 .201 .2095

117 .216 .219 .22 .22 .22 .22 .22 .22

118 .175 .169 .171 .176 .164 .192 .201 .2095

119 .216 .219 .22 .22 .22 .22 .22 .22

120 .175 .169 .171 .176 .184 .192 .201 .2095

121 .216 .219 .22 .22 .22 .22 .22 .22

122 .205 .204 .205 .209 .214 .22 .226 .233

123 .24 .247 .254 .262 .262 .262 .262 .262

124 .175 .169 .171 .176 .184 .192 .201 .2095

IZ5 .216 .219 .22 .22 .22 .22 .22 .22

126 .175 .169 .171 .176 .184 .192 ,201 .2095

127 .216 .219 .22 .22 .22 .22 .22 .22

128 .175 .169 .11 .176 .184 .192 .201 .2095

129 .216 .219 .22 .22 .22 .22 .22 .22

130 .205 .204 .205 .209 .214 .22 .226 .233

131 .24 .247 .254 .262 .262 .262 .262 .262

132 16 4 4 2. .366667 10. CM PRIME PER DELTA R OP 0

133 -.69 -.678 -.68 -. 69 -.71 -. 73 -.76 -.787

134 -. 81 -. 83 -. 84 -. 85 -.85 -.05 -.85 -. 85

135 -.69 -. 678 -. 68 -. 69 -. 71 -. 73 -.76 -.787

136 -. 81 -. 83 -. 84 -. 85 -.85 -. 85 -.85 -. 85

137 -. 69 -. 678 -. 68 -.69 -.71 -.73 -.76 -. 787

138 -.81 -. 83 -.84 -.85 -.85 -. 85 -. 85 -. 85

139 -.76 -.75 -.753 -.771 -. 8 -. 83 -0857 -. 886

140 -.917 -. 95 -. 98 -1.01 -1.01 -1.i -1.01 -1.01

141 -.69 -. 678 -.68 -. 69 -.71 -. 73 -.76 -. 7

142 -. 81 -. 83 -.84 -.85 -. 85 -.85 -.85 -. 83

143 -.69 -.678 -.68 -. 69 -. 1 -.73 -.76 -.787

144 -.81 -.83 -.84 -. 85 -. 85 -. 85 -. 85 -. 85

145 -.69 -.678 -. 68 -. 69 -.71 -.?3 -.76 -. 787

146 -.81 -.83 -.84 -. 85 -.85 -. 85 -.85 -.85

147 -.76 -.75 -.753 -.771 -.8 .U -.857 -. 886

148 -.917 -. 95 -. 98 -1.OL -1.01 -1.3L -k.01

149 -.795 -. 783 -. 786 -. 795 -. 01 ". -. 862 -.898

150 -. 922 -. 935 -. 93 -. 9 -.9 -.9 -. 9

15L -.795 -.783 -. 786 -. 795 -. 81 -. 3 -.862 -.898

152 -. 922 -. 935 -.93 -.9 -. 9 -. 9 -.9 -. 9

153 -. 795 -. 783 -.786 -. 795 -. 81 -. 83 -.662 -.898

154 -.922 -. 935 -. 93 -.9 -. 9 -. 9 -.91 -09

155 -. 865 -. 84 -.83 -. 848 -.87 -. 893 -.92 -. 94

156 -. 965 -. 994 -1.02 -1.05 -1.05 -1.05 -1.05 -1.05

157 -.795 -.783 -.786 -.795 -.81 -. 83 -.862 -.898

158 -. 922 -. 935 -.93 -.9 -. 9 -.9 -. 9 -. 9

159 -. 795 -.783 -. 786 -. 195 -.81 -.83 -.862 -. 898

160 -.922 -.935 -.93 -. 9 -.9 -. 9 -. 9 -. 9

161 -. 795 -. 783 -. 786 -. 795 -.81 -. 83 -. 862 -.898

162 -.922 -. 935 -.93 -. 9 -09 -. 9 -.9 -.9



184

CARD

163 -. 865 -. 84 -. 83 -. 848 -.87 -.893 -. 92 -.94

164 -.965 -.994 -1.02 -1.05 -1.05 -1.05 -1.05 -1.05
165 16 4 4 2. .366667 10. CL PRIME PER DELTA P
166 .13 .127 .125 .124 .123 .122 .1225 .124
167 .124 .123 .12 .116 .116 .116 .116 .116
168 .13 .127 .125 .124 .123 .122 .1225 .124
169 .124 .123 .12 .116 .116 .116 .116 .116
170 .13 .127 .125 .124 .123 -122 .1225 .124

171 .124 .123 .12 .116 .116 .116 .116 .116
172 .143 .14 .1375 .135 .133 .131 .13 .129
173 .128 .1285 .13 .132 .132 .132 .132 .132
174 .13 .127 .125 .124 .123 .122 .1225 .124
175 .124 .123 .12 .116 .116 .116 .116 .116
176 .13 .127 .125 .124 .123 .122 .1225 .124
177 .124 .123 .12 .116 .116 .116 .116 .116
178 .13 .127 .125 .124 .123 .122 .1225 .124
L79 .124 .123 .12 .116 .116 .116 .116 .116
180 .143 .14 .1375 .135 .133 .131 .13 .129
181 .128 .1285 .13 .132 .132 .132 .132 .132
182 .142 .1455 .146 .144 .1& .138 .137 .136
183 .1355 .1345 .134 .134 .134 .134 .134 .134
184 .142 .1455 .146 .144 .14 .138 .131 .136
185 .1355 .1345 .134 .134 .134 .134 .134 .134
186 .142 .1455 .146 .144 .14 .138 .137 .136
167 .1355 .1345 .134 .134 .134 .134 .134 .134
188 .148 .146 .144 .142 .14 .139 .138 .137
189 .136 .136 .1355 .135 .135 .135 .135 .135
190 .142 .1455 .146 .144 .14 .138 .13T .136
191 .1355 .1345 .134 .134 .134 .134 .134 .134
192 .142 .1455 .146 .144 .14 .138 .137 .136
193 .1355 .1345 .134 .134 .134 .134 .134 .134
194 .142 .1455 .146 .144 .14 .138 .137 .136
195 .1355 .1345 .134 .134 .134 .134 .134 .134
196 .148 .146 .144 .142 .14 .139 .138 .137
197 .136 .136 .1355 .135 .135 .135 .135 .135
198 999
199 1
200 TOTAL SYSTEM CHECKOUT RUN FOR DR J. ROWL4NDt 7 APRIL 1972.
201 .0025 15.0 40


